PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of air quality assessment in Kielce in relation to the Covid-19 pandemic

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza oceny jakości powietrza w Kielcach w związku z pandemią Covid-19
Języki publikacji
EN
Abstrakty
EN
Air pollution has a significant impact on citizens’ well-being and overall life quality. In this regard, regular air quality monitoring aims to keep pollution levels within prescribed limits and to identify the factors (winds, traffic, seasons, ambient temperature, air humidity, and so on) that influence pollution levels. To carry out a preliminary analysis of the air quality in Kielce, a specialist detector of PM2.5 and PM10 particles Steinberg 10030389 SBS-PM2.5 was used. Besides, the analysis referred to pollutants such as SO2; NO2; C6H6, which were provided from the Chief Inspectorate of Environmental Protection. Controlling the above mentioned pollutants for monthly and hourly averages of the selected time period in 2020 and 2021, taking into account the epidemiological situation (lockdown), graphs with the results were prepared. Then the analysis was carried out, with the preliminary assumption that the air quality is worse when the population functions normally than when it remains indoors, and that air quality is usually better at night than during the day.
PL
Zanieczyszczenie powietrza ma znaczący wpływ na samopoczucie obywateli i ogólną jakość życia. W związku z tym regularne monitorowanie jakości powietrza ma na celu utrzymanie poziomu zanieczyszczeń w wyznaczonych granicach oraz identyfikację czynników (wiatry, ruch uliczny, pory roku, temperatura otoczenia, wilgotność powietrza itp.), które wpływają na poziom zanieczyszczeń. Do przeprowadzenia wstępnej analizy jakości powietrza w Kielcach wykorzystano specjalistyczny detektor cząstek stałych PM2,5 i PM10 Steinberg 10030389 SBS-PM2,5. Ponadto w analizie uwzględniono takie zanieczyszczenia jak SO2; NO2; C6H6, które zostały udostępnione przez Główny Inspektorat Ochrony Środowiska. Kontrolując ww. zanieczyszczenia dla średnich miesięcznych i godzinowych z wybranego okresu w latach 2020 i 2021, z uwzględnieniem sytuacji epidemiologicznej (blokada), sporządzono wykresy z wynikami. Następnie przeprowadzono analizę, przyjmując wstępne założenie, że jakość powietrza jest gorsza, gdy ludność funkcjonuje normalnie, niż gdy pozostaje w pomieszczeniach zamkniętych, oraz że jakość powietrza jest zwykle lepsza w nocy niż w ciągu dnia.
Rocznik
Strony
24--32
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
  • Kielce University of Technology
  • Kielce University of Technology
  • University of Kragujevac, Serbia
  • University of Kragujevac, Serbia
Bibliografia
  • [1] Koval S., Vytisk J., Ruzičkova J., Raclavska H., Skrobankowa H., Hellebrandova L.: Influence of residential solid fuel boiler replacement on particulate air pollution, 2012.
  • [2] https://apps.apple.com/pl/app/kanarek/id1493134142?l=pl (accessed May 12, 21).
  • [3] https://investhoreca.pl/10030389-SBS-PM2-5-STEINBERG-MIERNIK-JAKOSCI-POWIETRZA-DETEKTOR-CZASTEK-PM2-5-i-PM10-STEINBERG-10030 (dostęp 22.05.21).
  • [4] Jurišević N., Šušteršič V., Gordić D., Rakić N.: Overview of air quality legislation and monitoring of measurement zone Serbia, 9th International Quality Conference, (June 2015), pp.145-151, Kragujevac, Serbia.
  • [5] Masseran N., Safari M.A.M.: Intensity-duration-frequency approach to risk assessment of air pollution events. J. Environ. Management. 2020, 264, 110429.
  • [6] Impact of PM 2.5 levels on pediatric emergency department visits in a semi-urban Greek peninsula Nikolaos Kanellopoulos Ioannis Pantazopoulos Maria Mermiri Georgios Mavrovounis Georgios Saharidis Konstantinos Gourgoulianis.
  • [7] Jurišević N., Šušteršič V., Gordić D., Rakić N.: Overview of air quality legislation and monitoring of measurement zone Serbia, 9th International Quality Conference (June 2015), pp. 145-151, Kragujevac, Serbia Particulate matter PM10 and PM2.5; https://ekometria.com.pl/progda/index.php/pgd-more/edukacja/zanieczyszczenia-a-zdrowie/pyl-pm10-i-pm2-5; 2017 Gdansk City Hall, Department of Environment.
  • [8] World Health Organization. Burden of disease of household air pollution for 2016, 2018. Available online: https://www.who.int/airpollution/data/HAP_BoD_results_May2018_final.pdf (accessed 25 February 2021).
  • [9] Janssen N., Fischer P., Marra M., Ameling C., Cassee F.: Short-term effects of PM2.5, PM10 and PM2.5-10 on daily mortality in the Netherlands. Science. Total Environment. 2013, 463, 20-26.
  • [10] Chen C-W, Tseng Y-S, Mukundan A, Wang H-C. Air Pollution: Sensitive Detection of PM2.5 and PM10 Concentration Using Hyperspectral Imaging. Applied Sciences. 2021; 11(10):4543.
  • [11] EEA. Air quality standards. 2020. available online: https://www.eea.europa.eu/themes/air/air-quality-concentrations/air-quality-standards (accessed March 3, 2021).
  • [12] Global Health Observatory. Public health and environment [Online database]. Available online: https://www.who.int/data/gho/data/themes/public-health-and-environment/GHO/public-health-and-environment (accessed February 25, 2021).
  • [13] Assessment of variability of air pollutant concentrations at industrial, communication and urban hinterland stations in Krakow using statistical methods; Robert Oleniacz; Tomasz Gorzelnik 2021.
  • [14] Gulia S., Nagendra S., Khare S., Khanna M.: Urban air quality management - a review. Atmosphere. Pollution. Res. 2015, 6, 286-304.
  • [15] Chan C.C., Hwang J.S.: Site representativeness of urban air monitoring stations. J. Air Waste Management. dr 1996, 46, 755-760.
  • [16] Chief Inspectorate of Environmental Protection. Air quality portal. Available online: http://powietrze.gios.gov.pl/pjp/archives (accessed on 20.06.21).
  • [17] Sowka I., Chlebowska-Styś A., Pachurka Ł., Rogula-Kozłowska W., Mathews B.: Analysis of variability of concentration and origin of particulate matter in selected urban areas in Poland. Sustainability 2019, 11, 5735.
  • [18] Bokwa A.: Environmental impacts of long-term changes in air pollution in Krakow, Poland. Pol. J. Environment. Stud. 2008, 17, 673-686.
  • [19] Seinfeld J., Pandis S.: Chemistry and physics of the atmosphere: from air pollution to climate change, Wiley: Hoboken, New Jersey, USA, 2016.
  • [20] Ćwik P.: Components of Smog, carbon monoxide; SmogLab. Available online https://smoglab.pl/czym-truje-nas-smog-2-tlenek-wegla/?gclid=EAIaIQobChMI3bTC_-yA8gIVhaSyCh1pFgBmEAAYAiAAEgL84PD_BwE (accessed 06/07.21).
  • [21] Drzeniecka-Osiadacz A.: Nitrogen dioxide NO 2; Our air. Available online: https://powietrze.uni.wroc.pl/base/t/dwutlenek-azotu-NO2. (accessed 06/07/21).
  • [22] “Nitrogen oxides” Environmental Health Criteria. Volume 4 PZWL 1983 MZiOS Department of Sanitary Inspection.
  • [23] Kalbarczyk R., Kalbarczyk E.: Seasonal variation of SO2 concentration in selected localities of north-western Poland in dependence on weather conditions, Szczecin, pp. 55-56.
  • [24] Kicińska B.: The influence of atmospheric circulation on the concentration of sulphur dioxide in Poland. Pr. St. Geogr. UW 28: 2001: 223-233.
  • [25] Kowalska M., Krzych Ł.: Influence of air pollution by particulate matter and sulphur dioxide on arterial pressure - state of the art 435, 439.
  • [26] Polakowska M., Piotrowski W., Włodarczyk P., Broda G., Rywik S.: Epidemiological program evaluating the prevalence of hypertension in Poland in the adult population - the PENT study. Part I. Hypertension 2002; 6: 157-166.
  • [27] Tomson J., Lip G.Y.: Blood pressure demographics: nature or nurture... genes or environment? BMC Medicine 2005; 3: 3.
  • [28] Delfino R.J., Sioutas C., Malik S.: Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ. Health Perspect. 2005; 113: 934-946.
  • [29] Katsouyanni K., Touloumi G., Samoli E.: Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 project. Epidemiology 2001; 12: 521-531.
  • [30] Ibald-Mulli A., Timonen K.L., Peters A.: Effects of particulate air pollution on blood pressure and heart rate in subjects with cardiovascular disease: a multicenter approach. Environ. Health Perspect. 2004; 112: 369-377.
  • [31] Ballester F., Tenias J.M., Perez-Hoyos S.: Air pollution and emergency hospital admissions for cardiovascular diseases in Valencia, Spain. J. Epidemiol. Community Health 2001; 55: 57-65. 27.
  • [32] Lee J.T., Kim H., Cho Y.S., Hong Y.C., Ha E.H. Park H.: Air pollution and hospital admissions for ischemic heart diseases among individuals 64+ years of age residing in Seoul, Korea. Arch. Environ. Health 2003; 58: 617-623.
  • [33] Glinka M.: Oznaczanie benzenu w powietrzu, 2003.
  • [34] Janowska S.: Benzen - toksyczność i objawy zatrucia, 2002.
  • [35] Smith T., Martyn T.: Advances in Understanding Benzene Health Effects and Susceptibility. Annual Review of Public Health. 31 (1), 2010, pp.133-148.
  • [36] Gardner L.K., Lawrence G.D.: Benzene Production from Decarboxylation of Benzoic Acid in the Presence of Ascorbic Acid and a Transition-Metal Catalyst. J. Agric. Food Chem. 1993, 41 (5): 693-695.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-218bf49b-e2fa-461f-a101-585c407a352f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.