PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aluminum Nitride Formation From Aluminum Oxide/Phenol Resin Solid-Gel Mixture By Carbothermal Reduction Nitridation Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wytwarzanie azotku aluminium z żelowej mieszaniny tlenku aluminium z żywicą fenolową metodą azotowania podczas carbotermicznej redukcji
Języki publikacji
EN
Abstrakty
EN
Hexagonal and cubic crystalline aluminum nitride (AlN) particles were successfully synthesized using phenol resin and alpha aluminum oxide (α-Al2O3) as precursors through new solid-gel mixture and carbothermal reduction nitridaton (CRN) process with molar ratio of C/Al2O3 = 3. The effect of reaction temperature on the decomposition of phenol resin and synthesis of hexagonal and cubic AlN were investigated and the reaction mechanism was also discussed. The results showed that α-Al2O3 powder in homogeneous solid-gel precursor was easily nitrided to yield AlN powder during the carbothermal reduction nitridation process. The reaction temperature needed for a complete conversion for the precursor was about 1700°C, which much lower than that when using α-Al2O3 and carbon black as starting materials. To our knowledge, phenol resin is the first time to be used for synthesizing AlN powder via carbothermal reduction and nitridation method, which would be an efficient, economical, cheap assistant reagent for large scale synthesis of AlN powder.
Twórcy
autor
  • Nano Convergence Intelligence Material Team, Korea, Institute of Ceramic, Engineering and Technology Sono-Ro 101, Jinju-Si, Kyeong-Sangnam-Do, 660-031 Korea
  • Electronic Materials Lab., School of Advanced Materials Science and Engineering, Sungkyunkwan. Univ, Suwon 440-746, Republic of Korea
autor
  • Electronic Materials Lab., School of Advanced Materials Science and Engineering, Sungkyunkwan. Univ, Suwon 440-746, Republic of Korea
autor
  • Nano Convergence Intelligence Material Team, Korea, Institute of Ceramic, Engineering and Technology Sono-Ro 101, Jinju-Si, Kyeong-Sangnam-Do, 660-031 Korea
Bibliografia
  • [1] B. H. Mussler, J.Am. Ceram. Soc. Bull 79, 45-47 (2000).
  • [2] L. M. Sheppard, J. Am. Ceram. Soc. Bull 69, 1801-1812 (1990).
  • [3] L. C. Pathak, A. K. Ray, S. Das, C. S. Sivaramakrishnan, P. Ramachandrarao, J. Am. Ceram. Soc. 82 [1], 257-260 (1999).
  • [4] M. L. Qin, X. L. Du, J. Wang, I. S. Humail, X. H. Qu, J. Eur. Ceram. Soc. 29 [4], 795-799 (2009).
  • [5] T. Yamakawa, J. Tatami, T. Wakihara, K. Komeya, T. Meguro, K.J.D. MacKenzie, S. Takagi, M. Yokouchi, J. Am. Ceram. Soc. 89 [5], 171-175 (2006).
  • [6] A. A. Adjaottor, G. L. Griffin, J. Am. Ceram. Soc. 75 [12], 3209-3214 (1992).
  • [7] M. L. Panchula, J. Y. Ying, J. Am. Ceram. Soc. 86 [7], 1114-1120 (2003).
  • [8] M. Iwata, K. Adachi, S. Furukawa, T. Amakawa, J. Phys. D: Appl. Phys. 37 [7], 1041-1047 (2004).
  • [9] K. Baba, N. Shohata, M. Yonezawa, J.Appl. Phys. Lett. 54 [23], 2309-2311 (1989).
  • [10] R. Fu, K. Chen, S. Agathopoulos, J.M.F. Ferreira, J. Cryst. Growth 296 [1], 97-103 (2006).
  • [11] H. B. Wang, J. C. Han, Z. Q. Li, S. Y. Du, J. Eur. Ceram. Soc. 21 [12], 2193-2198 (2001).
  • [12] G. Selvaduray, L. Sheet, J. Mater. Sci. Technol. 9 [6], 463-73 (1993).
  • [13] L. D. Silverman, J. Adv. Ceram. Mater 3 [4], 418-419 (1988).
  • [14] N. Hashimoto, H. Yoden, K. Nomura, J. Am. Ceram. Soc. 74 [6], 1282-1286 (1991).
  • [15] J. Wang, W. L. Wang, P. D. Ding, J. Diamond. Relat. Mater. 8[7], 1342-1344 (1999).
  • [16] Y. K. Lee, D. J. Kim, H. J. Kim, T. S. Hwang, M. Rafailovich, J. Sokolov, J. of App. Polym. Sci. 89, 2589-2597 (2003).
  • [17] J.-M. Lin, C.-C. Ma, M. Polym. Degrad. Stab. 69, 229 (2000).
  • [18] J. C Kuang, C. R. Zhang, X. G. Zhou, Q. C. Liu, C. Ye, J. Mater. Lett. 59[16], 2006-2010 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-218afd3d-da17-4421-8f91-47202557349a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.