Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
The International Chemical Engineering Conference 2021 (ICHEEC): 100 Glorious Years of Chemical Engineering and Technology, September 16–19, 2021
Języki publikacji
Abstrakty
Heat transfer study from the heated square cylinder at a different orientation angle to the stream of nanofluids has been investigated numerically. CuO-based nanofluids were used to elucidate the significant effect of parameters: Reynolds number (1–40), nanoparticle volume fraction (0.00–0.05), the diameter of the NPs (30–100 mn) and the orientation of square cylinder (0–90). The numerical results were expressed in terms of isotherm contours and average Nusselt number to explain the effect of relevant parameters. Over the range of conditions, the separation of the boundary layers of nanofluids increased with the size of the NPs as compared to pure water. NPs volume fraction and its size had a significant effect on heat transfer rate. The square cylinder of orientation angle (45) gained a more efficient heat transfer cylinder than other orientation angles. Finally, the correlations were developed for the average Nusselt number in terms of the relevant parameters for 45 orientation of the cylinder for new applications.
Czasopismo
Rocznik
Tom
Strony
243--–250
Opis fizyczny
Bibliogr. 8 poz., rys., tab. wykr.
Twórcy
autor
- Ambedkar National Institute of Technology Jalandar Punjab, Chemical Engineering Department, Pin code 144011, India
autor
- Ambedkar National Institute of Technology Jalandar Punjab, Chemical Engineering Department, Pin code 144011, India
autor
- Ambedkar National Institute of Technology Jalandar Punjab, Chemical Engineering Department, Pin code 144011, India
Bibliografia
- 1. Chhabra R.P., Richardson J.F., 2011. Non-Newtonian flow and applied rheology. Engineering applications. 2nd edition. Butterworth-Heinemann. DOI: 10.1016/B978-0-7506-8532-0.X0001-7.
- 2. Etminan-Farooji V., Ebrahimnia-Bajestan E., Niazmand H., Wongwises S., 2012. Unconfined laminar nanofluid flow and heat transfer around a square cylinder. Int. J. Heat Mass Transf., 55, 1475–1485. DOI: 10.1016/j.ijheatmasstransfer.2011.10.030.
- 3. Kaur J., Melnik R., Tiwari A.K., 2021. Forced convection heat transfer study of a blunt-headed cylinder in non-Newtonian power-law fluids. Int. J. Chem. Reactor Eng., 19, 673–688. DOI: 10.1515/ijcre-2020-0170.
- 4. Koo J.C., Kleinstreuer C., 2004. A new thermal conductivity model for nanofluids. J. Nanopart. Res., 6, 577–588. DOI: 10.1007/s11051-004-3170-5.
- 5. Masoumi N., Sohrabi N., Behzadmehr A., 2009. A new model for calculating the effective viscosity of nanofluids. J. Phys. D: Appl. Phys., 42, 055501. DOI: 10.1088/0022-3727/42/5/055501.
- 6. Pak B.C., Cho Y.I., 1998. Hydrodynamic and heat transfer study of dispersed fluid with submicron metlallic oxide particles. Exp. Heat Transfer, 11, 151–170. DOI: 10.1080/08916159808946559.
- 7. Valipour M.S., Ghadi A.Z., 2011. Numerical investigation of fluid flow and heat transfer around a solid circular cylinder utilizing nanofluid. Int. Commun. Heat Mass Transfer, 38, 1296–1304. DOI: 10.1016/j.icheatmasstransfer.2011.06.007.
- 8. Xuan Y.W., Roetzel W., 2000. Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transfer, 43, 3701–3707. DOI: 10.1016/S0017-9310(99)00369-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-218ae5b0-2ede-4a10-912d-ffbb8acd14d8