PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Simple Analytical Method for Determining Basic Hydrodynamic Characteristics of Hybrid Fluidized-Bed Air-Lift Apparatae

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A simple analytical method for determination of basic hydrodynamic characteristics of hybrid fluidized-bed air-lift devices was presented. These devices consist of two parts: a two-phase air-lift part and a two-phase liquid-solid fluidized-bed part. Forced circulation of fluid in the air-lift part is used for fluidization of solid particles in the fluidized-bed part. According to the opinion given in the literature, if such apparatus is used for aerobic microbiological processes, its advantage is lower shear forces acting on the biofilm immobilized on fine-grained material compared with shear forces in three-phase fluidized-bed bioreactors. Another advantage is higher biomass concentration due to its immobilization on fine particles, compared with two-phase airlift bioreactors. A method of calculating gas hold-up in the air-lift part, and gas and liquid velocities in all zones of the analyzed apparatus is presented.
Rocznik
Strony
121--133
Opis fizyczny
Bibliogr. 39 poz., tab.
Twórcy
autor
  • Cracow University of Technology, Department of Chemical and Process Engineering, ul. Warszawska 24, 30-155 Kraków, Poland
autor
  • Cracow University of Technology, Department of Chemical and Process Engineering, ul. Warszawska 24, 30-155 Kraków, Poland
Bibliografia
  • 1. Dunn I.J., Tanaka H., Uzman S., Denac M., 1983. Biofilm fluidized-bed reactors and their application to waste water nitrification. Ann. NY Acad. Sci., 413, 168-183. DOI: 10.1111/j.1749-6632.1983.tb47887.x.
  • 2. Dunn I.J., Heinzle E., Ingham J., Prenosil J.E., 2003. Biological reaction engineering. Dynamic modeling fundamentals with simulation examples. Wiley-VCH Verlag, Weinhem.
  • 3. Di Felice R., 1995. Hydrodynamics of liquid fluidisation. Chem. Eng. Sci., 50, 1213-1245. DOI: 10.1016/0009-2509(95)98838-6.
  • 4. Dziubiński M., Prywer J., 2009. Two-phase fluid mechanics (Mechanika płynów dwufazowych). WNT, Warszawa, Poland.
  • 5. Dziubiński M., Sowiński J., 1999. The specific interfacial area in an air-lift column (in Polish). Chem. Proc. Eng.,20(3), 409-421.
  • 6. Dziubiński M., Sowiński J., 2002. Liquid circulation velocity in pilot-plant scale air-lift columns (in Polish). Chem. Proc. Eng., 23, 141-150.
  • 7. Ergun S., 1952. Fluid flow through packed columns. Chem. Eng. Prog., 48, 89-94.
  • 8. Garnier A., Chavarie C., Andre G., Klvana D., 1990. The inverse fluidization airlift bioreactor, Part I: hydrodynamic studies. Chem. Eng. Comm., 98 , 31–45. DOI: 10.1080/00986449008911559.
  • 9. Grzywacz R., 2013. Airlift Bioreactor. Wydawnictwo Politechniki Krakowskiej, Kraków, Poland.
  • 10. Guo Y.X., Rathor M.N., Ti H.C., 1997. Hydrodynamic and mass transfer studies in a novel external-loop airlift reactor. Chem. Eng. J., 67, 205-214. DOI: 10.1016/S1385-8947(97)00043-0.
  • 11. Heijnen J.J., Hols J., Van der Lans R.G.J.M., Van Leeuwen H.L.J.M., Mulder A., Welte-vrede R., 1997. A simple hydrodynamic model for the liquid circulation velocity in a full scale two- and three-phase internal airlift reactor operating in the gas recirculation regime. Chem. Eng. Sci., 52, 2527-2540. DOI: 10.1016/S0009-2509(97)00070-5.
  • 12. Huang Y.L., Shu C.H., Yang S.T., 1997. Kinetics and modeling of GM-CSF production by recombinant yeast in 3-phase fluidized-bed bioreactor. Biotechnol. Bioeng., 53, 470-477. DOI: 10.1002/(SICI)1097-0290(19970305)53:5<470:AID-BIT4>3.0.CO;2-E.
  • 13. Kawalec- Pietrenko B., 2000. Liquid circulation velocity in the inverse fluidized bed airlift reactor. Bioproc. Eng.,23, 397-402. DOI: 10.1007/s004499900182.
  • 14. Kawalec- Pietrenko B., 2004. Three-phase airlift reactors (in Polish). Chem. Proc. Eng., 25, 1925-1935.
  • 15. Kawalec- Pietrenko B., Holowacz I., 1998. Region-dependent oxygen transfer rate in the rectangular airlift reactor. Bioproc. Eng., 18, 163-170. DOI: 10.1007/s004490050426.
  • 16. Kawalec- Pietrenko B., Łazarczyk M., 2004. Application of an air-lift reactor with the inverse fluidized-bed in biodegradation of dimethyl ketone (in Polish). Inż. Ap. Chem., 2, 3-5.
  • 17. Kawalec- Pietrenko B., Matczak B., 2006. Comparison of the oxygen transfer rate in the inverse fluidized-bed airlift reactor and related bubble column reactors (in Polish). Chem. Proc. Eng., 27, 125-139.
  • 18. Kmieć A., 1980. Bed expansion and heat and mass transfer in fluidized beds (in Polish). Scientific papers of the Institute of Chemical Engineering and Heating Equipment, Wrocław, Poland.
  • 19. Leva M., 1959. Fluidization, Mc Graw-Hill, New York.
  • 20. Livingston A.G., 1991. Biodegradation of 3,4-dichloroaniline in a fluidized bed reactor and a steady state biofilm kinetic model. Biotechnol. Bioeng., 38, 260-272. DOI: 10.1002/bit.260380308.
  • 21. Lu W.J., Hwang S.J., Chang C.M., 1995. Liquid velocity and gas holdup in three-phase internal loop airlift reactors with low-density particles. Chem. Eng. Sci., 50, 1301-1310. DOI: 10.1016/0009-2509(95)98842-3.
  • 22. Merchuk J.C., 2003. Airlift bioreactors: review of recent advances. Can. J. Chem. Eng., 81, 324-337. DOI: 10.1002/cjce.5450810301.
  • 23. Merchuk J.C., Siegel M.H., 1988. Airlift reactors in chemical and biological technology. J. Chem. Tech. Biotechnol., 41, 105-120. DOI: 10.1002/jctb.280410204.
  • 24. Miyahara T., Kawate O., 1993. Hydrodynamics of a solid-suspensed bubble column with a draught tube containing low density particles. Chem. Eng. Sci., 48, 127-133. DOI: 10.1016/0009-2509(93)80289-3.
  • 25. Mowla D., Ahmadi M., 2007. Theoretical and experimental investigation of biodegradation of hydrocarbon polluted water in a three phase fluidized-bed bioreactor with PVC biofilm support. Biochem. Eng. J. 36, 147-156. DOI: 10.1016/j.bej.2007.02.031.
  • 26. Nore O., Briens C., Margaritis A., Wild G., 1992. Hydrodynamics, gas-liquid mass transfer and particles-liquid heat and mass transfer in a three-phase fluidized bed for biochemical process applications. Chem. Eng. Sci., 47, 3573-3580. DOI: 10.1016/0009-2509(92)85072-J.
  • 27. Olivieri G., Marzocchella A., Salatino P., 2010. A novel three-phase airlift reactor without circulation of solids.
  • 28. Can. J. Chem. Eng., 88, 574-578. DOI: 10.1002/cjce.20314.
  • 29. Onysko K.A., Robinson C.W., Budman H.M., 2002. Improved modelling of the unsteady-state behavior of an immobilized-cell, fluidized-bed bioreactor for phenol biodegradation. Can. J. Chem. Eng., 80, 239-252. DOI: 10.1002/cjce.5450800209.
  • 30. Razumow I.M., 1975. Fluidization and pneumatic transport of fine materials (in Polish). WNT, Warszawa.
  • 31. Sarra M., Casas C., Godia F., 1997. Continuous production of a hybrid antibiotic by Streptomyces-lividans Tk21 pellets in a 3-phase fluidized-bed bioreactor. Biotechnol. Bioeng., 53, 601-610. DOI: 10.1002/(SICI)1097-0290.
  • 32. Tabiś B., Georgiou A., 2003. Method for the determination of the steady states of a three-phase fluidized-bed bioreactor. Chem. Proc. Eng., 24, 551-566.
  • 33. Tabiś B., Kupiec K., 2003. Hydrodynamics of a three-phase airlift bioreactor containing low-density particles (in Polish). Chem. Proc. Eng., 24, 217-233.
  • 34. Tabiś B., Stryjewski W., 2013. Conditions for application of fluidized-bed bioreactors in aerobic processes (in Polish). Inż. Ap. Chem. 52, 487-489.
  • 35. Tang W.-T., Fan L.-S., 1987. Steady state phenol degradation in a draft-tube, gas-liquid-solid fluidized-bed bioreactor. AICHE J. 33, 239-249. DOI: 10.1002/aic.690330210.
  • 36. Tang W.T., Wisecarver K., Fan L.S., 1987. Dynamics of a draft tube gas-liquid-solid fluidized bed bioreactor for phenol degradation. Chem. Eng. Sci., 42, 2123-2134. DOI: 10.1016/0009-2509(87)85033-9.
  • 37. Tripathy A., Sahu A.K., Biswal S.K., Mishra B.K., 2013. A model for expansion ratio in liquid-solid fluidized beds. Particuology. 11, 789-792. DOI: 10.1016/j.partic.2012.11.006.
  • 38. Vunjak-Novakovic G., Jovanovic G., Kundakovic L., Obradovic B., 1992. Flow regimes and liquid mixing in a draft tube gas-liquid-solid fluidized bed. Chem. Eng. Sci., 47, 3451-3458. DOI: 10.1016/0009-2509(92)85057-I.
  • 39. Wisecarver K.D., Fan L.S., 1989. Biological phenol degradation in a gas-liquid-solid fluidized bed reactor. Biotechnol. Bioeng., 33, 1028-1038. DOI: 10.1002/bit.260330812.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-218633bd-0fbc-490a-ac91-70c2b20613a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.