Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents an efficiency analysis of two transcritical CO2 power cycles with regenerative heaters. For the proposed cycles, calculations of thermal efficiency are given for selected values of operating parameters. It was assumed that the highest working temperature and pressure are in the range from 600 to 700°C and 40 to 50 MPa, respectively. The purpose of the calculations was optimization of the pressure and mass flows in the regenerative heaters to achieve maximum cycle efficiency. It follows that for the assumed upper CO2 parameters, efficiency of 51-54% can be reached, which is comparable to the efficiency of a supercritical advanced power cycle considered by Dostal.
Czasopismo
Rocznik
Tom
Strony
197--217
Opis fizyczny
Bibliogr. 13 poz., il.
Twórcy
autor
- University of Warmia and Mazury, Faculty of Technical Sciences, Oczapowskiego 11, 10-719 Olsztyn, Poland
autor
- The Szewalski Institute of Fluid Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
autor
- The Szewalski Institute of Fluid Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
- [1] Feher E.G.: The supercritical thermodynamic power cycle. In: Advances in Energy Conversion Engineering, Intersociety Energy Conversion Engineering Conference, ASME, 1967, 37-44.
- [2] Trela M.: A study of a novel cycle utilising CO2 as a working fluid. IFFM Rep. 254/71 Gdańsk 1971 (in Polish).
- [3] Szewalski R.: A New high-efficiency steam power cycle with high-temperature regeneration. Bull. L’Academie Polonaise des Sciences XIX(1971), 3.
- [4] Sedler B.: Some aspects of using a supercritical regenerative heat exchanger in a steam supercritical thermodynamic cycle. Trans. IFFM, 66(1975), 29-43 (in Polish).
- [5] Angelino G.: Real gas effects in carbon dioxide cycles. Atomkernenergie 17(1971), 27-33.
- [6] Dostal V.: A supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. DSc thesis, Massachusetts Institute of Technology, 2004.
- [7] Liu B.T., Chien K.H., Wang C.C.: Effect of working fluid on organic Rankine cycle for waste recovery. Energ. 29(2004) 1207-1217.
- [8] Hung T.C., Shai T.Y., Wang S.K.: A review of organic Rankine cycles (ORC)for the recovery of low-grade waste heat. Energ. 22(1997), 661-667.
- [9] Borsukiewicz-Gozdur A., Nowak W.: Increasing of electricity generation capacity of biogas power generator by application of sub- and supercritical modules of organic Rankine cycle. Arch. Thermodyn. 30(2009), 4, 3-17.
- [10] Chen Y., Lundqvist P., Johansson A., Platell P.: A comparative study of the carbon dioxide transcritical power cycle compared with an organic Rankine cycle with R123 as working fluid in waste heat recovery. Appl. Therm. Eng. 26(2006), 2142-2147.
- [11] Yamaguchi H., Zhang X., R., Fujima K., Enomoto M., Sawada N.: Solar energy power Rankine cycle using CO2. Appl. Therm. Eng. 26(2006), 2345-2354.
- [12] Zhang X. R., Yamaguchi H., Fujima K., Enomoto M., Sawada N.: Theoretical analysis of a thermodynamic cycle for power and heat production using super-critical carbon dioxide. Energy 32(2007), 591-599.
- [13] Trela M., Kwidziński R., Butrymowicz D.: A definition of near-critical region based on heat capacity variation in transcritical heat exchangers. Arch. Thermodyn. 32(2011), 2, 55-68.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-218475c7-1421-4d5a-9d33-81dbe49d2994