PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automatic epilepsy detection using wavelet-based nonlinear analysis and optimized SVM

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aiming at the problems of low accuracy, poor universality and functional singleness for seizure detection, an effective approach using wavelet-based non-linear analysis and genetic algorithm optimized support vector machine (GA-SVM) is proposed to deal with five challenging classification problems in this study. Instead of the traditional discrete wavelet transform (DWT), we attempt to explore the ability of double-density discrete wavelet transform (DD-DWT) to decompose the original EEG into specific sub-bands. The Hurst exponent (HE) and fuzzy entropy (FuzzyEn) are extracted as input features and then fed into two classifiers. On using these ranking non-linear features, the GA-SVM configured with fewer features is found to achieve the prominent classification performance for various combinations such as AB-CD-E, A-D-E, ABCD-E, C-E and D-E, achieving accuracies of 99.36%, 99.60%, 99.40%, 100% and 100%, respectively. The results have indicated that our scheme is not only appropriate in solving problems with multiple classes but also of lower complexity and better expansibility. These characteristics would make this method become an attractive alternative for actual clinical diagnosis.
Twórcy
autor
  • College of Communication Engineering, Jilin University, Ren Min Street, 5988 Changchun, 130012, China
autor
  • College of Communication Engineering, Jilin University, Ren Min Street, 5988 Changchun, 130012, China
autor
  • College of Communication Engineering, Jilin University, Ren Min Street, 5988 Changchun, 130012, China
Bibliografia
  • [1] Lima CAM, Coelho ALV, Chagas S. Automatic EEG signal classification for epilepsy diagnosis with Relevance Vector Machines. Expert Syst Appl 2009;36(6):10054–9.
  • [2] World Health Organization, Epilepsy. http://www.who.int/mental_health/neurology/epilepsy/en/ index.html [accessed September, 2015].
  • [3] Acharya UR, Sree SV, Swapna G, Martis RJ, Suri JS. Automated EEG analysis of epilepsy: a review. Knowl-Based Syst 2013;45(3):147–65.
  • [4] Kumar TS, Kanhangad V, Pachori RB. Classification of seizure and seizure-free EEG signals using local binary patterns. Biomed Signal Process Control 2015;33–40.
  • [5] Faust O, Acharya UR, Adeli H, Adeli A. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 2015;26:56–64.
  • [6] Guo L, Rivero D, Dorado J, Munteanu CR, Pazos A. Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst Appl 2011;38(8):10425–36.
  • [7] Hakan I, Esma S. Diagnosis of epilepsy from electroencephalography signals using multilayer perceptron and elman artificial neural networks and wavelet transform. J Med Syst 2012;36(1):1–13.
  • [8] Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 2007;32(4):1084–93.
  • [9] Adeli H, Ghosh-Dastidar S, Dadmehr N. A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans Biomed Eng 2007;54 (2):205–11.
  • [10] Kumari R, Shantha S, Sadasivam V. De-noising and baseline wandering removal of electrocardiogram using double density discrete wavelet. Int J Wavelets Multiresol Inf Process 2007;05(5):399–415.
  • [11] Sveinsson JR, Benediktsson JA. Double density wavelet transformation for speckle reduction of SAR images. Geoscience and Remote Sensing Symposium. 2002. pp. 113–5.
  • [12] Yuan Q, Zhou W, Li S, Cai D. Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res 2011;96(1):29–38.
  • [13] Kumar Y, Dewal ML, Anand RS. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 2014;133(8):271–9.
  • [14] Song YD, Liò P. A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine. J Biomed Sci Eng 2010;3(6):556–67.
  • [15] Acharya UR, Molinari F, Sree SV, Chattopadhyay S, Ng KH, Suri JS. Automated diagnosis of epileptic EEG using entropies. Biomed Signal Process Control 2012;7(4):401–8.
  • [16] Song Y, Crowcroft J, Zhang J. Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J Neurosci Methods 2012;210 (2):132–46.
  • [17] Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 2009;36(2):2027–36.
  • [18] Zheng J, Cheng J, Yang Y. A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy. Mech Mach Theory 2013;70(6):441–53.
  • [19] EEG Time Series Data (Department of Epileptology University of Bonn, Germany). http://epileptologie-bonn.de/cms/front_content.php? idcat=193&lang=3&changelang=3 [accessed September, 2015].
  • [20] Selesnick IW. The double density DWT. Boston: Kluwer; 2001. p. 1–25.
  • [21] Li P, Zhang H, Xing H, Wu D. Clutter removal of Doppler ultrasound signal using double density discrete wavelet transform. Proc. 2009 ICBBE Conference. 2009. pp. 1–4.
  • [22] Rajendra AU, Faust O, Kannathal N, Chua T, Laxminarayan S. Non-linear analysis of EEG signals at various sleep stages. Comput Methods Programs Biomed 2005;80(1):37–45.
  • [23] DePetrillo PB, Speers D, Ruttimann UE. Determining the Hurst exponent of fractal time series and its application to electrocardiographic analysis. Comput Biol Med 1999;29 (6):393–406.
  • [24] Kosko B. Fuzzy entropy and conditioning. Inf Sci 1986;40 (2):165–74.
  • [25] Acharya UR, Fujita H, Sudarshan VK, Bhat S, Koh JEW. Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl-Based Syst 2015;88:85–96.
  • [26] Chen W, Wang Z, Xie H, Yu W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans Neural Syst Rehabil Eng 2007;15(2):266–72.
  • [27] Li Y, Xu M, Zhao H, Huang W. Hierarchical fuzzy entropy and improved support vector machine based binary tree approach for rolling bearing fault diagnosis. Mech Mach Theory 2016;98:114–32.
  • [28] Chen W, Zhuang J, Yu W, Wang Z. Measuring complexity using FuzzyEn, ApEn, and SampEn. Med Eng Phys 2009;31 (1):61–8.
  • [29] Cortes C, Vapnik V. Support vector network. Mach Learn 1995;20(3):273–97.
  • [30] Wu CH, Tzeng GH, Goo YJ, Fang WC. A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Syst Appl 2007;32(2):397–408.
  • [31] Sharma R, Pachori RB. Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst Appl 2015;42(3): 1106–17.
  • [32] Siuly S, Li Y. Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification. Comput Methods Programs Biomed 2015;119(1):29–42.
  • [33] Iscan Z, Dokur Z, Demiralp T. Classification of electroencephalogram signals with combined time and frequency features. Expert Syst Appl 2011;38(8):10499–505.
  • [34] Cao S, Zhang G. Adaptive power quality signal de-noising based on double-density discrete wavelet transform. Comput Eng Appl 2012;48(13):244–8.
  • [35] Acharya UR, Sree SV, Suri JS. Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int J Neural Syst 2012;22(2):565–79.
  • [36] Orhan U, Hekim M, Ozer M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 2011;38:13475–81.
  • [37] Wang D, Miao D, Xie C. Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst Appl 2011;38(11):14314–20.
  • [38] Acharya UR, Sree SV, Alvin APC, Suri JS. Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Syst Appl 2012;39(39):9072–8.
  • [39] Alam SMS, Bhuiyan MIH. Detection of seizure and epilepsy using higher order statistics in the EMD domain. IEEE J Biomed Health Inform 2013;17(2):312–8.
  • [40] Das AB, Bhuiyan MIH, Alam SMS. Classification of EEG signals using normal inverse Gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection. Signal Image Video Process 2014;1–8.
  • [41] Riaz F, Hassan A, Rehman S, Niazi IK, Dremstrup K. EMD based temporal and spectral features for the classification of EEG signals using supervised learning. IEEE Trans Neural Syst Rehabil Eng 2015;1.
  • [42] Kaya Y, Uyar M, Tekin R, Selcuk Y. 1D-local binary pattern based feature extraction for classification of epileptic EEG signals. Appl Math Comput 2014;243:209–19.
  • [43] Martis RJ, Tan JH, Chua CK, Loon CT, Jie SYW, Tong L. Epileptic EEG classification using nonlinear parameters on different frequency bands. J Mech Med Biol 2015;15 (3):1550040.
  • [44] Zhu G, Yan L, Peng W. Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm. Comput Methods Programs Biomed 2014;115 (2):64–75.
  • [45] Nicolaou N, Georgiou J. Detection of epileptic electroencephalogram based on permutation entropy and support vector machine. Expert Syst Appl 2012;39:202–9.
  • [46] Acharya UR, Sree SV, Suri JS. Automatic detection of epileptic EEG signals using higher order cumulant feature. Int J Neural Syst 2011;21(5):403–14.
  • [47] Acharya UR, Vinitha S, Chattopadhyay S, Yu W, Alvin APC. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Int J Neural Syst 2011;21(3):199–211.
  • [48] Acharya UR, Yanti R, Zheng JW, Krishnan MMR, Hong TJ, Martis RJ, et al. Automated diagnosis of epilepsy using CWT, HOS and texture parameters. Int J Neural Syst 2013;23 (3):1001–7.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2181c7d8-01c6-4dbe-b51e-d2fc19b9ca99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.