PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cannibalization policies: adoption in the maintenance of fleet systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fleet systems are considered complex due to the interaction between their units and components. Maintenance management systems face various challenges to achieve acceptable availability and reliability rates at a reasonable cost. A critical task for making maintenance decisions is understanding the system requirements to select maintenance policies appropriate for the actual and future system state. When there is a replacement shortage in a fleet system, and it is impossible to supply new spare parts quickly, cannibalization policies can mitigate this scarcity via the interchange of components. However, this procedure presents the maintenance manager with different evaluation effects, such as increased maintenance hours, decreased system reliability rate, and unavailability in some units. Finding an equilibrium between the benefits and risks has caught the attention of researchers. This work gathers diverse proposals for applying cannibalization policies and the effects that arise from using them. Models, methods, tools, and identified gaps in understanding what parameters of the components and environments of the fleet systems favor cannibalization are discussed.
Rocznik
Tom
Strony
63--75
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
  • Instrumentation and Control Department, University of Cauca, Popayán, Colombia. Faculty of Electronic Engineering, Cra. 2 #4N-140, Popayán, Cauca, Colombia
  • Instrumentation and Control Department, University of Cauca, Popayán, Colombia. Faculty of Electronic Engineering, Cra. 2 #4N-140, Popayán, Cauca, Colombia
  • Department of Systems Engineering and Automation, Universitat Politècnica de València, Camí de Vera, s/n, 46022 València, Spain
Bibliografia
  • 1. Petchrompo S., A.K. Parlikad. 2019. „A review of asset management literature on multi-asset systems”. Reliability Engineering & System Safety 181: 181-201. DOI: https://doi.org/10.1016/j.ress.2018.09.009
  • 2. Márquez A. C. 2007. "Definition of Maintenance Objectives and Strategy". In: The Maintenance Management Framework: Models and Methods for Complex Systems Maintenace: 101-106. Edited by Adolfo Crespo Marquez. London: Springer. ISBN: 978-1-84996-654-2.
  • 3. Myers A. 2010. "Basic Elements of System Reliability". In: Complex system reliability: 7-26. Springer. Edited by Albert Myers. London: Springer. ISBN: 978-1-4471-5713-7.
  • 4. Ahmad R., S. Kamaruddin. 2012. „An overview of time-based and condition-based maintenance in industrial application”. Computers and Industrial Engineering 63:135-149. DOI: https://doi.org/10.1016/j.cie.2012.02.002.
  • 5. Shafiee M. 2015. „Maintenance strategy selection problem: an MCDM overview”. Journal of Quality in Maintenance Engineering 21(4): 378-402. DOI: https://doi.org/10.1108/JQME-09-2013-0063.
  • 6. Cho D.I., M. Parlar.1991. „Invited Review A survey of maintenance models for multi-unit systems”. European Journal of Operational Research 51: 1-23. DOI: https://doi.org/10.1016/0377-2217(91)90141-H.
  • 7. Okyere-Boateng K. O. 2015. A between-squadron analysis of cannibalization on the MV-22. Naval Postgraduate School Monterey. United States.
  • 8. Trunkey R. D. 2021. „The Capacity of the Navy’s Shipyards to Maintain Its Submarines”. Congressional Budget Office. United States.
  • 9. Curtin N.P. 2001. Cannibalizations Adversely Affect Personnel and Maintenance. General Accounting Office. United States.
  • 10. Srivastava A.K., G. Kumar, P. Gupta. 2020. „Estimating maintenance budget using Monte Carlo simulation”. Life Cycle Reliability and Safety Engineering 9: 77-89. DOI: https://doi.org/10.1007/s41872-020-00110-7.
  • 11. Sheng J., D. Prescott. 2019. „Using a novel hierarchical coloured Petri net to model and optimise fleet spare inventory, cannibalization and preventive maintenance”. Reliability Engineering & System Safety 191: 106579. DOI: https://doi.org/10.1016/j.ress.2019.106579.
  • 12. Siddiqi A., O.L. De Weck. 2007. „Spare parts requirements for space missions with reconfigurability and commonality”. Journal of Spacecraft and Rockets 44: 147-155. DOI: https://doi.org/10.2514/1.21847.
  • 13. Vujanović D. 2018. „Influence of the maintenance management with a comprehensive approach on the efficient and rational operation of vehicle fleets”. Tehnika 72(6): 886-893. DOI: https://doi.org/10.5937/tehnika1706886V.
  • 14. Ruan M.Z., Q.M. Li, Y.W. Peng, S. Wang. 2012. „Optimization and availability evaluation of spare parts project of multi-indenture system under incomplete cannibalization”. Journal of Nanjing University of Science and Technology 36: 886-891.
  • 15. Reneau D. M. 1993. „On Estimating Survival for Reliability Models Based on Age-Related Stochastic Comparisons”. Naval Research Logistics: 603-615. DOI: https://doi.org/10.1002/1520 6750(199308).
  • 16. Morse A. 2017. Investigation into equipment cannibalization in the Royal Navy. National Audit Office, United Kingdom. ISBN: 9781786041302.
  • 17. Fisher W.W., J.J. Brennan. 1986. „The performance of cannibalization policies in a maintenance system with spares, repair, and resource constraints”. Naval Research Logistics Quarterly 33: 1-15. DOI: https://doi.org/10.1002/nav.3800330102.
  • 18. Keating E.G., A.C. Resnick, E.N. Loredo, R. Hillestad. 2008. Insights on Aircraft Programmed Depot Maintenance: An Analysis of F-15 PDM. RAND Corp Santa Monica CA.
  • 19. Weber M., D. Steeneck, W. Cunningham. 2020. „Order fulfillment errors and military aircraft readiness”. Journal of Defense Analytics and Logistics 4(1): 71-87. DOI: https://doi.org/https://doi.org/10.1108/JDAL-05-2018-0009.
  • 20. Salman S., C. R. Cassady, E.A. Pohl, S.W. Ormon. 2006. „Evaluating the Impact of Cannibalization on Fleet Performance”. Quality and Reliability Engineering International 23: 445-447. DOI: https://doi.org/10.1002/qre.826.
  • 21. Hoover J., J.M. Jondrow, R.S. Trost, M. Ye. 2002. A model to Study. Cannibalization, FMC, and Customer waiting time. CNA- Center for Naval Analyses. United States.
  • 22. Sheng J., D. Prescott. 2016. „Optimising spare parts provision and inspection intervals for an aircraft fleet undergoing cannibalization”. Safety and Reliability: 88-105. Taylor & Francis. DOI: https://doi.org/10.1080/09617353.2016.1219935.
  • 23. Hirsch W.M., M. Meisner, C. Boll. 1968. „Cannibalization in multicomponent systems and the theory of reliability”. Naval Research Logistics Quarterly 15: 331-36. DOI: https://doi.org/10.1002/NAV.3800150302.
  • 24. Simon R.M. 1970. „Optimal cannibalization policies for multicomponent systems”. SIAM Journal on Applied Mathematics.
  • 25. Simon R. M. 1972. „The reliability of multicomponent systems subject to cannibalization”. Naval Research Logistics Quarterly 19: 1-14. DOI: https://doi.org/10.1002/nav.3800190102.
  • 26. Khalifa D., M. Hottenstein, S. Aggarwal. 1977. „Cannibalization policies for multistate systems”. Operations Research 25(6): 1032-1039. DOI: https://doi.org/10.1287/opre.25.6.1032.
  • 27. Mangara B. 2017. „Cannibalization revisited”. In Pattern Recognition Association of South Africa and Robotics and Mechatronics: 219-224. Bloemfontein, South Africa. DOI: https://doi.org/10.1109/RoboMech.2017.8261151
  • 28. Sheng J., D. Prescott. 2016. „A hierarchical coloured Petri net model of fleet maintenance with cannibalisation”. Reliability Engineering and System Safety 168: 1-16. DOI: 10.1016/j.ress.2017.05.043.
  • 29. Wang Y., C. Chang, J. Yang. 2017. „Optimal Configuration Method of Block Spare Parts for k/N Systems Considering Cannibalization”. Journal of System Simulation 29: 654-661. DOI: https://doi.org/10.16182/j.issn1004731x.joss.201703025.
  • 30. Moore T.D., A.W. Johnson, M.T. Rehg, M.J. Hicks. 2007. „Quality assurance staffing impacts in military aircraft maintenance units”. Journal of Quality in Maintenance Engineering 13: 33-48. DOI: https://doi.org/10.1108/13552510710735104.
  • 31. Fisher W. W.1990. „Markov process modelling of a maintenance system with spares, repair, cannibalization and manpower constraints”. Mathematical and Computer Modelling: An International Journal 13(7): 119-125. DOI: https://doi.org/10.1016/0895-7177(90)90134-9.
  • 32. Cao W., X. Jia, Q. Hu, J. Zhao, Y. Wu. 2018. „A literature review on selective maintenance for multi-unit systems”. Quality and Reliability Engineering International 34: 824-845. DOI: https://doi.org/10.1002/qre.2293
  • 33. Uhomoibhi M. I. 2016. "Audit of repairs and maintenance of vehicles in the African Union-United Nations hybrid operation in Dafur". United Nations Report.
  • 34. Federal Aviation Administration. U.S. Department of Transportation. Advisory Circular. 2009. Part and materials substitution for vintage aircraft.
  • 35. Abdulgader A.B.B., O.M.A. Ebishi, S.Y.A. Mohammed, T.S.E. Ibrahim. 2015. „Factors affecting civil aircraft availability”. PhD Thesis. Sudan University of Sciences and Technology.
  • 36. Wakiru J., L. Pintelon, P. Muchiri, P. Chemweno. 2018. „Maintenance optimization: application of remanufacturing and repair strategie”. Procedia CIRP 69: 899-904. DOI: https://doi.org/10.1016/j.procir.2017.11.008
  • 37. Zhang R., A. Ghanmi.2014. „Detailed cannibalization decision making for maintenance systems in the military context”. In: 8th Annual IEEE International Systems Conference, SysCon: 108-115. Ottawa. 31 March - 3 April 2014, Canada. ISBN: 978-1-4799-2089-1.
  • 38. Byrkett D.L. 1985. „Units of Equipment Available Using Cannibalization for Repair-Part Support”. IEEE Transactions on Reliability R-34. DOI: https://doi.org/10.1109/TR.1985.5221916.
  • 39. Dreyfuss M., A. Stulman. 2018. „Waiting time distribution for an exchangeable item repair system with two failed components”. International Journal of Operational Research 32: 380-396. DOI: https://doi.org/10.1007/s10479-017-2614-0.
  • 40. Dreyfuss M., A. Stulman. 2019. „Cannibalisation in a repair/replacement inventory system”. International Journal of Logistics Systems and Management 34: 139-153. DOI: https://doi.org/10.1504/IJLSM.2019.102212.
  • 41. Zammori F., M. Bertolini, D. Mezzogori. 2020. „A constructive algorithm to maximize the useful life of a mechanical system subjected to aging, with nnon-suppliablespares parts”. International Journal of Industrial Engineering Computations 11: 17-34.
  • 42. Ormon S. 2003. „Exploring the Effects of Cannibalization on Fleet Performance”. In: IIE Annual Conference. Proceedings, Institute of Industrial and Systems Engineers (IISE).
  • 43. Mangara B.T. 2017. „Model Development for Reliability Cannibalization”. System Reliability 129. DOI: https://doi.org/10.5772/intechopen.69609.
  • 44. Hochberg M. 1973. „Generalized multicomponent systems under cannibalization”. Naval Research Logistics Quarterly 19: 700-711. DOI: https://doi.org/10.1002/nav.3800200402.
  • 45. Fisher W.W. 1988. „Analytic performance estimation for complex maintenance systems”. Simulation - The Society for Modeling and Simulation International 51(6): 222-226. https://doi.org/10.1177/003754978805100.
  • 46. Fisher W.W. 1990. „Issues and models in maintenance systems incorporating cannibalization: A review”. INFOR: Information Systems and Operational Research 28: 67-88. DOI: https://doi.org/10.1080/03155986.1990.11732119.
  • 47. Ormon S. 2003. „Exploring the Effects of Cannibalization on Fleet Performance”. In: IIE Annual Conference. Proceedings. Institute of Industrial and Systems Engineers (IISE).
  • 48. Sheng J., D. Prescott. 2019. „Using a novel hierarchical coloured Petri net to model and optimise fleet spare inventory, cannibalisation and preventive maintenance”. Reliability Engineering & System Safety 191: 106579. DOI: https://doi.org/10.1016/j.ress.2019.106579.
  • 49. J. Sheng, D. Prescott. 2019. „A coloured Petri net framework for modelling aircraft fleet maintenance”. Reliability Engineering & System Safety 189: 67-88. DOI: https://doi.org/10.1016/j.ress.2017.05.043.
  • 50. Dave M., T. Cooper, C. Martin, I. Reagan. 2020. Update: impact of COVID-19 on commercial MRO. Oliver Wyman TechReport.
  • 51. Ozigis I., J. Oche, N. Lawal. 2021. „Locomotive engines and the future of railway automotive power in Africa: A review”. Nigerian Journal of Technology 40: 660-673. DOI: https://doi.org/10.4314/njt.v40i4.13.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-217db8a3-abbc-4533-a04e-59745a21d39a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.