PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pre-treatment of bio fraction waste prior to fermentation processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Current efforts are taken to increase resource efficiency, close material loops, and improve sustainable waste and by-products management. Thus, networking agro-food by-products andc onverting them into valuable products completely exhausting the potential of the raw material becomes significant. Model lignocellulosic and starch based biomass were subjected to pre-treatment with the application of acidic compounds, i.e. sulphuric (SA) and acetic (AA) acids. The response, i.e. total sugar content and derivatives content is investigated depending on variables changed during hydrolysis: concentration of acid, process duration, temperature and the size of the biomass particles. After saccharification, the hydrolysates were analysed via HPLC. Total reducing sugars concentration was in the range of 0.1 – 15.53 g/LAmong the substances present in the hydrolysates, protein, peptides, hydroxybenzyl acid (HA), 5-HMF, furfural (FF), vanillin (V), vanillic acid (VA), formic acid (FA) and levulinic acid (LA) were found in the range of 0.44 – 9.05 g/L and determined as total derivatives concentration. The aim of the study was to evaluate the measurable effects of the research and deliver information about the statistically important parameters for the process course and relations between the variables.
Rocznik
Strony
art. no. e50
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • 1. Akobi C., Hisham H., Nakhla G., 2016. The impact of furfural concentrations and substrate-to-biomass ratios on biological hydrogen production from synthetic lignocellulosic hydrolysate using mesophilic anaerobic digester sludge. Biores. Technol., 221, 598–606. DOI: 10.1016/j.biortech.2016.09.067.
  • 2. Anwar Z., Gulfraz M., Irshad M., 2014. Agro-industrial lignocel-lulosic biomass a key to unlock the future bio-energy: A brief review. J. Radiat. Res. Appl. Sci., 7, 163–173. DOI: 10.1016/j.jrras.2014.02.003.
  • 3. Arce C., Kratky L., 2022. Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization. iScience, 25, 104610. DOI: 10.1016/j.isci.2022.104610.
  • 4. Bhutto A.W., Qureshi K., Harijan K., Abro, R., Abbas T., Bazmi A.A., Karim S., Yu G., 2017. Insight into progress in pre-treatment of lignocellulosic biomass. Energy, 122, 724–745. DOI: 10.1016/j.energy.2017.01.005.
  • 5. Bothe H., Falkenberg B., NolteernstingU., 1974. Properties and function of the pyruvate: Ferredoxin oxidoreductase from the blue-green algaAnabaena cylindrica. Arch. Microbiol., 96, 291– 304. DOI: 10.1007/BF00590185.
  • 6. Chisti Y., 2007. Biodiesel from microalgae. Biotechnol. Adv., 25, 294–306. DOI: 10.1016/j.biotechadv.2007.02.001.
  • 7. Dahmani S., Zerrouki D., Ramanna L., Rawat I., Bux F, 2016. Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region. Biores. Technol., 219, 749–752. DOI: 10.1016/j.biortech.2016.08.019.
  • 8. Han Y., Bai Y., Zhang J., Liu D., Zhao X., 2020. A comparison of different oxidative pretreatments on polysaccharide hydrolyzability and cell wall structure for interpreting the greatly improved enzymatic digestibility of sugarcane bagasse by delignification. Bioresour. Bioprocess., 7, 24 (2020). DOI: 10.1186/s40643-020-00312-y.
  • 9. Hay J.X.W., Wu Y.W., Juan J.C., Md. Jahim J., 2013. Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: Overview, economics, and future prospects of hydrogen usage. Biofuels, Bioprod. Bioref., 7, 334– 352. DOI: 10.1002/BBB.1403.
  • 10. He Q., Guo Q., Ding L., Gong Y., Wei J.., Yu G., 2018. Co-pyrolysis behavior and char structure evolution of raw/torrefied rice straw and coal blends. Energy Fuels, 32, 12469–12476. DOI: 10.1021/acs.energyfuels.8b03469.
  • 11. Ji C.-F., Yu X.-J., Chen Z.-A.., Xue S., Legrand J., Zhang W., 2011. Effects of nutrient deprivation on biochemical compositions and photo-hydrogen production of Tetraselmis subcordiformis. Int. J. Hydrogen Energy, 36, 5817–5821. DOI: 10.1016/j.ijhydene.2010.12.138.
  • 12. Jönsson L.J., Martín C., 2016. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol., 199, 103–112. DOI: 10.1016/j.biortech.2015.10.009.
  • 13. Keskin T., Abo-Hashesh M., Hallenbeck P.C. 2011. Photofermentative hydrogen production from wastes. Biores Technol, 102(18), 8557–8568. DOI: 10.1016/j.biortech.2011.04.004.
  • 14. Kucharska K., Cieśliński H., Rybarczyk P., Słupek E., Łukajtis R., Wychodnik K., Kamiński M., 2019. Fermentative conversion of two-step pre-treated lignocellulosic biomass to hydrogen. Catalysts, 9, 858. DOI: 10.3390/catal9100858.
  • 15. Kucharska K., Hołowacz I., Konopacka-Łyskawa D., Rybarczyk P., Kamiński M., 2018a. Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. Renewable Energy, 129, 384–408. DOI: 10.1016/j.renene.2018.06.018.
  • 16. Kucharska K., Makoś-Chełstowska P., Słupek E., Gębicki J., 2021. Management of dark fermentation broth via bio refining and photo fermentation. Energies, 14, 6268. DOI: 10.3390/en14196268.
  • 17. Kucharska K., Rybarczyk P., Hołowacz I., Łukajtis R., Glinka M., Kamiński M., 2018b. Pretreatment of lignocellulosic materialsas substrates for fermentation processes. Molecules, 23, 2937. DOI: 10.3390/molecules23112937.
  • 18. Kumar G., Biswarup S., Sivagurunathan P., Lin C.-Y., 2016. High rate hydrogen fermentation of cello-lignin fraction in de-oiled jatropha waste using hybrid immobilized cell system. Fuel, 182, 131–140. DOI: 10.1016/j.fuel.2016.05.088.
  • 19. Mabutyana L., Pott R.W.M., 2021. Photo-fermentative hydrogen production by Rhodopseudomonas palustris CGA009 in the presence of inhibitory compounds. Int. J. Hydrogen Energy, 46, 29088–29099. DOI: 10.1016/j.ijhydene.2020.12.189.
  • 20. Makoś P., Słupek E., Gębicki J., 2020. Extractive detoxification of feedstocks for the production of biofuels using new hydrophobic deep eutectic solvents – Experimental and theoretical studies. J. Mol. Liq., 308, 113101. DOI: 10.1016/j.molliq. 2020.113101.
  • 21. Matwijczuk A., Oniszczuk T., Matwijczuk A., Chruściel E., Kocira A., Niemczynowicz A., Wójtowicz A., Combrzyński M., Wiącek D., 2019. Use of FTIR spectroscopy and chemometrics with respect to storage conditions of Moldavian dragonhead oil. Sustainability, 11, 6414. DOI: 10.3390/su11226414.
  • 22. Pointner M., Kuttner P., Obrlik T., Jäger A., Kahr H., 2014. Composition of corncobs as a substrate for fermentation of biofuels. Agronomy Research, 12(2), 391–396.
  • 23. Potumarthi R., Baadhe R.R., Bhattacharya S.P., 2013. Fermentable sugars from lignocellulosic biomass: Technical challenges, In: Gupta V., Tuohy M. (Eds), Biofuel Technologies. Springer, Berlin, Heidelberg, 3–27. DOI: 10.1007/978-3-642- 34519-7_1.
  • 24. Raheem A., Ding L., He Q., Hussain Mangi F., Hussain Khand Z., Sajid M., Ryzhkov A., Yu G., 2022a. Effective pretreatment of corn straw biomass using hydrothermal carbonization for co-gasification with coal: Response surface methodology – Box Behnken design. Fuel, 324, 124544. DOI: 10.1016/J.FUEL.2022.124544.
  • 25. Raheem A., Sajid M., Ding L., Memon A.A., Yu G., 2022b. 24 – Syngas from microalgae, In: Jacob-Lopes E., Zepka L.Q., Severo I.A., Maroneze M.M. (Eds.), 3rd generation biofuels: Disruptive technologies to enable commercial production. Woodhead Publishing Series in Energy, Woodhead Publishing, 571–596. DOI: 10.1016/B978-0-323-90971-6.00005-X.
  • 26. Raheem A., Wan Azlina W.A.K.G., Taufiq Yap Y.H., Danquah M.K., Harun R., 2015. Optimization of the microalgae Chlorella vulgaris for syngas production using central composite design. RSC Adv., 5, 71805–719815. DOI: 10.1039/C5RA10503J.
  • 27. Ramli R.N., Utra U., Hena S., C.K.., 2023. Screening and optimization of starch from marine microalgae isolated from Penang sea water Malaysia. Biocatal. Agric. Biotechnol., 51, 102758. DOI: 10.1016/j.bcab.2023.102758.
  • 28. Ravichandran K., Ahmed A.R., Knorr D., Smetanska I., 2012. The effect of different processing methods on phenolic acid content and antioxidant activity of red beet. Food Res. Int., 48, 16–20. DOI: 10.1016/j.foodres.2012.01.011.
  • 29. Ravinder T., Swamy M.V., Seenayya G., Reddy G., 2001. Clostridium lentocellum SG6 – a potential organism for fermentation of cellulose to acetic acid. Bioresour. Technol., 80, 171–177. DOI: 10.1016/S0960-8524(01)00094-3.
  • 30. Razola-Díaz M.C., Verardo V., Martín-García B., Díaz-de-Cerio E., García-Villanova B., Guerra-Hernández E.J., 2020. Estab-lishment of acid hydrolysis by Box–Behnken methodology as pretreatment to obtain reducing sugars from tiger nut byproducts. Agronomy, 10, 477. DOI: 10.3390/agronomy10040477.
  • 31. Redondas V., Gómez X., García S., Pevida C., Rubiera F., Morán A., Pis. J.J., 2012. Hydrogen production from food wastes and gas post-treatment by CO2 adsorption. Waste Manage., 32, 60–66. DOI: 10.1016/j.wasman.2011.09.003.
  • 32. Sahare P., Singh R., Laxman R.S., Rao M., 2012. Effect of alkali pretreatment on the structural properties and enzymatic hydrolysis of corn cob. Appl. Biochem. Biotechnol., 168, 1806–1819. DOI: 10.1007/s12010-012-9898-y.
  • 33. Scholz M., Bernard F., Stockmeier F., Falß S., Wessling M, 2013. Techno-economic analysis of hybrid processes for bio-gas upgrading. Ind. Eng. Chem. Res., 52, 16929–16938. DOI: 10.1021/ie402660s.
  • 34. Silva J.P.A., Mussatto S.I., Roberto I.C., 2010. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Appl. Biochem. Biotechnol., 162, 1306–1315. DOI: 10.1007/s12010-009-8867-6.
  • 35. Słupek E., Kucharska K., Gębicki J., 2019. Alternative methods for dark fermentation course analysis. SN Appl. Sci., 1, 469. DOI: 10.1007/s42452-019-0488-2.
  • 36. Słupek E., Makoś P., Kucharska K., Gębicki J.. 2020. Mesophilic and thermophilic dark fermentation course analysis using sensor matrices and chromatographic techniques. Chem. Pap., 74, 1573–1582. DOI: 10.1007/s11696-019-01010-6.
  • 37. Sorokin C., Krauss R.W., 1958. The effects of light intensity on the growth rates of green algae. Plant Physiol., 33, 109–113. DOI: 10.1104/pp.33.2.109.
  • 38. Tamoradi T., Kiasat A.R., Veisi H., Nobakht V., Besharati Z., Karmakar B., 2021. MgO doped magnetic graphene derivative as a competent heterogeneous catalyst producing biofuels via transesterification: Process optimization through Response Surface Methodology (RSM). J. Environ. Chem. Eng., 9, 106009. DOI: 10.1016/j.jece.2021.106009.
  • 39. Vijayaraghavan K., Ahmad D., 2006. Biohydrogen generation from palm oil mill effluent using anaerobic contact filter. Int. J. Hydrogen Energy, 31, 1284–1291. DOI: 10.1016/j.ijhydene.2005.12.002.
  • 40. Watanabe T., Suzuki A., Nakagawa H., Kirimura K., Usami S., 1998. Citric acid production from cellulose hydrolysate by a 2-deoxyglucose-resistant mutant strain of Aspergillus niger. Bioresour. Technol., 66, 271–274. DOI: 10.1016/S0960-8524(98)80029-1.
  • 41. Xing Y., Li Z., Yaoting F., Hou H., 2010. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environ. Sci. Pollut. Res., 17, 392–399. DOI: 10.1007/s11356-009-0187-4.
  • 42. Yokoi H., Akio S., Uchida H., Hirose J., Hayashi S., Takasaki Y., 2001. Microbial hydrogen production from sweet potato starch residue. J. Biosci. Bioeng., 91, 58–63. DOI: 10.1016/S1389-1723(01)80112-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-217c524d-d2d6-4d56-98d4-2595ab5bb9bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.