PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy switching for multiple model adaptive control in manipulator robot

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, fuzzy logic is used to perform switching controllers for Multiple Model Adaptive Control (MMAC) in manipulator robot. In the cases which uncertainty bounds of system’s parameters are large, the performance and stability issue of system are considerable concerns. Multiple Model Adaptive Control approach can be useful method to stabilize these kinds of systems. In this control method, the uncertainty bound is divided into several smaller bounds. As a result, the process of stabilization would be streamlined. In this regard, one estimation is obtained for uncertain parameter in every minor bound, and based on estimation errors designed controller can alter. In order to avoid switching controllers and pertinent challenges a summation of controllers with coefficient tuned by fuzzy logic is considered. Simulation results substantiate the efficacy of this method.
Twórcy
autor
  • Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
autor
  • Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
  • Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
  • Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
Bibliografia
  • [1] M. Kuipers, P. Ioannou, „Practical Robust Adaptive Control: Benchmark Example”. In: American Control Conference, 2008. DOI: 10.1109/ACC.2008.4587315.
  • [2] X. Z. Jin, Q. Li, „The Application of Multiple Model Adaptive Control to Superheated Steam Temperature”. In: Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, Baoding, 2009, 12–15.
  • [3] N. Sadati, R. Ghadami, „Adaptive multi-modelsliding mode control of robotic manipulators using soft computing”, Neurocomputing, vol. 71, no. 13–15, 2008, 2702–2710. DOI: 10.1016/j.neucom.2007.06.019.
  • [4] R. Vinodha, S. Abraham Lincoln, J. Prakash, „Multiple Model and Neural based Adaptive Multi-loop PID Controller for a CSTR Process”,International Journal of Electrical and Computer Engineering, vol. 2, no. 8, 2009, 412–417.
  • [5] S. Kamalasadan, A. A. Ghandakly, „A Novel Fuzzy Multiple Reference Model Adaptive Controller Design”, International Journal of Fuzzy Systems, vol. 8, no. 3, 2006.
  • [6] M. C. Turner, D. J. Walker, „Linear quadratic bumpless transfer”, Automatica, vol 36, no. 8, 2000, 1089–1101.
  • [7] L. Giovanini, A. W. Ordys, Michael J. Grimble, „Adaptive Predictive Control using Multiple Models, Switching and Tuning, Adaptive Predictive Control using Multiple Models, Switching and Tuning”, International Journal of Control, Automation, and Systems, vol. 4, no. 6, 2006, 669–681.
  • [8] S. S. Ge, F. Hongand T. H. Lee, „Adaptive Neural Control of Nonlinear Time-Delay Systems With Unknown Virtual Control Coefficients”, IEEE Tran. on systems, man, and cybernetics – part b: cybernetics, vol.34, no. 1, 2004, 499–516.
  • [9] Y. Jia, H. Kokame, J. Lunze, „Simultaneous Adaptive Decoupling and Model Matching Control of a Fluidized Bed Combustor for Sewage Sludge”, IEEE Tran. on Control System Technology, vol. 11, no, 4, 2003, 571–577.
  • [10] D. F. Wang, P. Han, G. Y. Wang, H.M. Lu, „Multiple-Model Adaptive Predictive Functional Control and its Application”. In: Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, 2002.
  • [11] Y. Zhang, T. Chai, Y. Fu, H. Niu, „Nonlinear Adaptive Control Method Based on ANFIS and Multiple Models”. In: Proceedings of the 48th IEEE Conference on Decision and Control, Shanghai, P.R. China, 16–18 Dec., 2009). DOI: 10.1109/CDC.2009.5399518.
  • [12] B. M. Mirkin, P.O. Gutman, „Output feedbackmodel reference adaptive control for multi-input–multi-output plants with state delay”, Systems & Control Letters, vol. 54, no. 10, 2005, 961–972.
  • [13] A. Sassi, C. Ghordel, A. Abdelkrim, „Multiple model adaptive control of complex systems”. In: Proceedings of International Conference on Control, Engineering & Information Technology (CEIT’14), 2014, 229–235.
  • [14] B. Chaudhuri, R. Majumder, B. C. Pal, „Application of Multiple-Model Adaptive Control Strategy for Robust Damping of Interarea Oscillations in Power System”, IEEE Tran. on Control Systems Technology, vol. 12, no. 5, 2004, 727–736.
  • [15] H. Ke, W. Li, „Adaptive Control Using Multiple Models without Switching”, Journal of Theoretical and Applied Information Technology, vol. 53, no. 2, 2013, 229–235.
  • [16] S. Blazic, I. Skrjanc, „A Robust Fuzzy Adaptive Control Algorithm for a Class of Nonlinear Systems”, Adaptive and Natural Computing Algorithms, vol. 7824, 2013, 297–306.
  • [17] D. Gao, Z. Sun, B. Xu, „Fuzzy Adaptive Control for Pure-feedback System Via Time Scale Separation”, International Journal of Control, Automation and Systems, vol. 11, no. 1, 2013, 147–158.DOI: 10.1007/s12555-010-0011-4.
  • [18] X. Zhao, P. Shi, X. Zheng, „Fuzzy Adaptive Control Design and Discretization for a Class of Nonlinear Uncertain Systems”, IEEE Trans. Cybern, vol. 46, no, 6, 2016, 1476–1483. DOI: 10.1109/TCYB.2015.2447153.
  • [19] A. Boulkroune, M. Tadjine, M. Msaad, M. Farza, „Fuzzy adaptive controller for MIMO nonlinear systems with known and unknown control direction”, Fuzzy Sets and Systems, vol. 161, no. 6, 2010, 797–820. DOI: 10.1016/j.fss.2009.04.011.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2179985a-b72e-49ad-8b6c-c9c489220cae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.