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1. Introduction

Multi-axis CNC machine tools are typical mechatronic devices 
with high added value and a wide range of applications. Achieving 
a high machining accuracy is adamant to ensure a high quality and 
performance of the machined mechanical product and the machining 
accuracy is therefore an important consideration for any manufacturer 
[30]. Machining accuracy is influenced by machining errors belong-
ing to several categories, e.g. kinematics errors, thermal errors, cutting 
force induced errors, servo errors and tool wear [3]. It is influenced 
by a variety of machining errors which can be divided into several 
categories, e.g., kinematics errors, thermal errors, errors induced by 
the cutting force, servo errors and tool wear [3]. Among these differ-
ent error sources, the geometric error of the machine tool components 
and structures is one of the biggest sources of inaccuracy, accounting 
for about 40% of all errors. Therefore, methods for improving the 

machining accuracy of CNC machine tools have become a hot topic 
recently. 

1.1.	 Volumetric error model

In order to improve the machining accuracy of CNC machine 
tools, the theoretical modeling of errors is crucial to maximize the 
performance of these machine tools [4]. Error modeling can provide 
a systematic and suitable way to establish the error model for a given 
CNC machine tool. In recent years, many studies have focused on 
modeling multi-axis machine tools to determine the resultant error of 
individual components in relation to the set-point deviation of the tool 
and the workpiece. Furthermore, the various methods for modeling 
the geometric errors from different perspectives have experienced a 
gradual development [7]. To describe the error of the cutter location 
and the tool orientation between the two kinematic chains, the error 
model is normally established using homogeneous transformation 
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Wraz z wciąż rosnącym zapotrzebowaniem na coraz to wyższą dokładność obróbki, niezawodność dokładności obróbki stała się 
wskaźnikiem pozwalającym na ocenę charakterystyk obrabiarek. W rezultacie, metody doskonalenia niezawodności dokładności 
obróbki znalazły się w centrum uwagi zarówno producentów jak i użytkowników tych maszyn. Na ogół, do zmniejszenia dokładno-
ści obróbki prowadzą nakładające się błędy geometryczne. W niniejszej pracy, niezawodność dokładności obróbki zdefiniowano 
jako zdolność obrabiarki do pracy z określoną dla niej dokładnością w zadanych warunkach przez dany okres czasu. Zapropono-
wano nowe podejście do analizy niezawodności dokładności obróbki oparte na symulacji metodą szybkich łańcuchów Markowa. 
Za pomocą tej metody, można ustalić siedem różnych przyczyn uszkodzeń obrabiarki. Analizę czułości niezawodnościowej dokład-
ności obróbki przeprowadzono obliczając całkę prawdopodobieństwa uszkodzenia obrabiarki. Określono także kluczowe błędy 
geometryczne, które najsilniej wpływają na niezawodność dokładności obróbki. Wreszcie, efektywność proponowanej metody 
sprawdzono doświadczalnie na przykładzie obrabiarki czteroosiowej.

Słowa kluczowe:	 niezawodność dokładności obróbki, obrabiarka, szybki łańcuch Markowa, analiza czułości 
niezawodnościowej, całka prawdopodobieństwa uszkodzenia.
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matrices (HTM) [10, 18, 20], denavit-hartenberg (D-H) method [16], 
modified denavit-hartenberg (MD-H) method [19], or multi-body sys-
tem (MBS) theory [31, 32]. Among these different approaches, MBS 
theory, first proposed by Houston, has evolved into the best method 
for the modeling of geometric errors of machine tools because it pro-
vides for a simple and convenient method to describe the topological 
structure of an MBS [21].

1.2.	 Reliability analysis

After the error model for a given machine tool has been estab-
lished, the next step is to study the machine tool’s machining accu-
racy reliability. Recently, several studies have been published which 
reported on the reliability of mechanical systems from different per-
spectives. For instance, Du et al. has summarized three useful ways 
to improve the reliability of a machine, including (1) changing the 
mean values of random variables, (2) changing the variances of ran-
dom variables, and (3) a truncation of the distributions of random 
variables [9]. Tang proposed a new method based on graph theory and 
Boolean functions for assessing the reliability of mechanical systems 
[26]. Avontuur and van der Werff proposed a new method for analyz-
ing the reliability of mechanical and hydraulic systems based on finite 
element equations, which describe the motion of and the equilibrium 
between internal and external loads for structures and mechanisms 
[1]. Lin investigated the reliability and failure of face-milling tools 
when cutting stainless steel and the effect of different cutting condi-
tions (cutting speed, feed, cutting depth) on the tool life [22]. Chen 
et al. performed a reliability estimation for cutting tools based on a 
logistic regression model using vibration signals [5]. However, to the 
best of our knowledge, there have been no studies on the machin-
ing accuracy reliability of CNC machine tools. The machining ac-
curacy reliability refers to the tool’s ability to perform at its specified 
machining accuracy. In general, the volumetric error of a machine 
tool can be divided into the errors corresponding to the X-, Y-, and 
Z-directions, respectively. The machining errors in each direction are 
likely to exceed the required machining accuracy, thereby effectively 
rendering the machine inaccurate and unreliable, and thus unusable. 
Consequentially, the machining accuracy of a machine tool is related 
to many different failure modes.

1.3.	 Sensitivity analysis

However, many different geometric errors have 
to be taken into account when modeling a multi-axis 
machine tool. For example, there are 29 geometric er-
rors for a 4-axis machine tool. These geometric er-
rors are interacting, and how to determine their degree 
of influence on the machining accuracy reliability is 
currently a difficult problem of machine tool design 
[14, 40]. Performing a sensitivity analysis is one pos-
sibility to identify and quantify the relationships be-
tween input and output uncertainties [29]. A variety of 
sensitivity analysis methods have been published in 
literature. For instance, Ghosh et al. proposed a new 
approach for a stochastic sensitivity analysis based on 
first-order perturbation theory [12]. Chen et al. estab-
lished a volumetric error model and performed a sen-
sitivity analysis for a 5-axis ultra-precision machine 
tool [6]. Based on the results of the local sensitivity 
analysis, they were able to slightly reduce the key error components, 
which made it easier to control the accuracy of the machine tool [6]. 
Cheng et al. considered the stochastic characteristic of the geomet-
ric errors and employed Sobol’s global sensitivity analysis method 
to identify the crucial geometric errors of a machine tool, which is 
helpful for improving the machining accuracy of multi-axis machine 
tools [7]. De-Lataliade et al. developed a method based on Monte 

Carlo simulations (MCS) for estimating the reliability sensitivity [8]. 
Xiao et al. considered both epistemic and aleatory uncertainties in 
their reliability sensitivity analysis and proposed a unified reliability 
sensitivity estimation method for both epistemic and aleatory uncer-
tainties by integrating the principles of a p-box, interval arithmetic, 
FORM, MCS, and weighted regression [28]. Guo and Du proposed 
a sensitivity analysis method for a mix of random and interval vari-
ables and defined six sensitivity indices for evaluating the sensitivity 
of the average reliability and reliability bounds with respect to the 
averages and widths of the intervals [13]. A sensitivity analysis of the 
geometric errors allows to identify the most critical geometric errors 
and then to strictly control them, thereby significantly improving the 
machining accuracy of the machine tool [24, 27]

Improving the machining accuracy reliability of machine tools is 
an important goal for both manufacturers and users, and two tasks 
are usually involved to accomplish it: 1) to express and measure the 
machine accuracy reliability of the machine tool; 2) to identify the 
most critical geometric errors that most strongly affect the machining 
accuracy reliability of each failure mode. In this study, the sensitiv-
ity analysis was used to provide information for the reliability-based 
design based on solving the integral of the failure probability.

The paper is structured as follows: Section 2 deals with the mod-
eling of the volumetric machining accuracy with consideration of the 
geometric error. The machining accuracy reliability analysis based on 
the Fast Markov chain simulation method is presented in Section 3. 
The sensitivity analysis based on the integration of the failure proba-
bility to identify the critical geometric errors is presented in Section 4. 
In Section 5, the results of the experimental validation are discussed. 
In this work, a vertical machining center was selected as an example 
to validate the proposed analysis method. The conclusions are pre-
sented in Section 6.

2. Volumetric error modeling by MBS theory

In this research, a 4-axis CNC machine tool, whose wire frame 
structure model is shown in Fig.1, was chosen as an example to dem-
onstrate the core concepts of the proposed methods, and its main tech-
nical parameters are listed in Table 1. For a 4-axis machine tool, there 
are 24 position-dependent geometric errors and 5 position-independ-
ent geometric errors when the machine tool is modeled as a set of 
rigid bodies according to MBS theory. The different geometric errors 
are listed in Table 2.

2.1. Topological structure and geometric errors

This 4-axis machine tool has four slides that can be moved relative 
to each other. The two other bodies that are fixed to the machine are 
the tool and the workpiece. Table 3 illustrates the degrees of freedom 
between each pair of bodies with respect to the constraints, where “0” 
means no degree of freedom and“1” means one degree of freedom.

Based on MBS theory, various parts of the machine can be de-

Table 1.	 Main technical parameters of the 4-axis CNC machine tool used as an example in this 
study.

              Configuration of the machine tool modules Parameters

Workbench

Dimensions 2-630 mm×630 mm

Maximum weight of the workpiece 1200kg

Minimum indexing angle of the workbench 0.001°

Working range

Range in X-direction 1000mm

Range in Y-direction 900mm

Range in Z-direction 900mm

Range of motion for the rotation around the A-axis 360°
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scribed just as an arbitrary classical body in terms of the geometric 
structure, and the machine tool can be treated as a MBS[17,25].

As shown in Fig. 2, the 4-axis machine tool can be described as 
a structure with a double-stranded topology in which the first branch 
is composed of the bed, the slide carriage (Y-axis), the RAM (X-axis) 
and the tool. The second branch is composed of the bed, the slide car-
riage (Z-axis), the workbench (A-axis), and the workpiece. The bed 
is set as the inertial reference frame and denoted as body B0, and the 
slide carriage (Y-axis) is denoted as body B1. According to the natu-
ral growth sequence, the bodies are sequentially numbered along the 
direction away from the body B1 from one branch to the other branch 
[11]. Fig. 2 illustrates the topology diagram for the machine tool. Ta-
ble 4 shows the lower body array for the selected precision horizontal 
machining center.

A rigid solid body has six degrees of freedom. These six coor-
dinates uniquely specify the position of a rigid body in 3D space[2]. 
Each body iB  has 6 independent geometric errors hx∆ , hy∆ , hz∆ , 

hα∆ , hβ∆  and hγ∆ . hx∆ , hy∆  and hz∆  are translational errors. 

hα∆ , hβ∆  and hγ∆  are rotational errors and are referred to as pitch, 
roll and yaw. The subscript h denotes the direction of motion, i.e., 

either X, Y, Z or A. There are five squareness errors, i.e., XYγ∆ , XZβ∆

, YZα∆ , YAγ∆  and ZAβ∆  between the motion axis. 

Table 2.	 Geometric errors for the horizontal precision machining center

Axis Error term Sym-
bol

X-axis Positioning error ∆xX

Y-direction component of the straightness error ∆yX

X-direction component of the straightness error ∆zX

Rolling error ∆αX

Britain swing error ∆βX

Yaw error ∆γX

Y-axis X-direction component of the straightness error ∆xY

Positioning error ∆yY

Z-direction component of the straightness error ∆zY

Rolling error ∆αY

Britain swing error ∆βY

Yaw error ∆γY

Z-axis X-direction component of the straightness error ∆xY

Y-direction component of the straightness error ∆yZ

Positioning error ∆zZ

Rolling error ∆αZ

Britain swing error ∆βZ

Yaw error ∆γZ

A-axis Run out error of the A-axis ∆xA

Run out error in Y-direction ∆yA

Run out error in Z-direction ∆zA

Angular error around A-axis ∆αA

Angular error around Y-axis ∆βA

Angular error around Z-axis ∆γA

Orientation 
error X,Y-axis perpendicularity error ∆γXY

X,Z-axis perpendicularity error ∆βXZ

Y,Z-axis perpendicularity error ∆αYZ

Parallelism of the X-axis and the A-axis in the 
Z-direction

∆βZA

Parallelism of the X-axis and the A-axis in the 
Y-direction

∆γYA

Table 3.	 Degrees of freedom of the different two-body pairs of the precision 
horizontal machining center.

Adjacent bodies
Directions

X Y Z α β γ

0-1 0 1 0 0 0 0

1-2 1 0 0 0 0 0

2-3 0 0 0 0 0 0

0-4 0 0 1 0 0 0

4-5 0 0 0 1 0 0

5-6 0 0 0 0 0 0

Fig. 1.	 Schematic illustration of the 4-axis horizontal precision machining 
center used as an example in this study.

Fig. 2 Topological graph for the precision horizontal machining center. B0-
bed; B1-slide carriage (Y-axis); B2-RAM (X-axis); B3-tool; B4-Slide 
carriage (Z-axis); B5-workbench (A-axis); B6-workpiece
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2.2.	 Generalized coordinates and characteristic matrixs

In order to normalize and make the machine tool accuracy mod-
eling more convenient, special notations and conventions are needed 
for the coordinate system. The conventions used here are as follows: 
(1) Right-handed Cartesian coordinate systems were established for 
all the inertial components and the moving parts. These coordinates 
are generalized coordinates; the coordinate system on the inertial body 
is referred to as the reference coordinate system, and the coordinate 
systems on the other moving bodies are referred to as the moving co-

Table 4.	 Lower body array for the precision horizontal machining center.

Classical Body j 1 2 3 4 5 6

1 2 3 4 5 6

0 1 2 0 4 5

0 0 1 0 0 4

0 0 0 0 0 0

Table 5.	 Characteristic matrices for the precision horizontal machining center

Adjacent bodies Body ideal static, motioncharacteristic matrix Body static, kinematic error characteristic matrix

0-1

01 4 4p ×=M I 01 4 4p ×∆ =M I

01

1 0 0 0
0 1 0
0 0 1 0
0 0 0 1

s

y
 
 
 =
 
 
 

M 01

1
1

1
0 0 0 1

Y Y Y

Y Y Y
s

Y Y Y

x
y
z

γ β
γ α
β α

−∆ ∆ ∆ 
 ∆ −∆ ∆ ∆ =
 −∆ ∆ ∆
 
 

M

1-2

12 4 4p ×=M I 12

1 0 0
1 0 0

0 0 1 0
0 0 0 1

XY

XY
p

γ
γ

−∆ 
 ∆ ∆ =
 
 
 

M

12

1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

s

x 
 
 =
 
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 

M 12

1
1

1
0 0 0 1
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X X X
s

X X X

x
y
z

γ β
γ α
β α

−∆ ∆ ∆ 
 ∆ −∆ ∆ ∆ =
 −∆ ∆ ∆
 
 

M

2-3
23 4 4p ×=M I 23 4 4p ×∆ =M I

23 4 4p ×=M I 23 4 4p ×∆ =M I

0-4

04 4 4p ×=M I 04

1 0 0
0 1 0

1 0
0 0 0 1

XZ

YZ
p

XZ YZ

β
α

β α

∆ 
 −∆ ∆ =
 −∆ ∆
 
 

M

04

1 0 0 0
0 1 0 0
0 0 1
0 0 0 1

s z

 
 
 =
 
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 

Ì 04

1
1

1
0 0 0 1

Z Z Z

Z Z Z
s

Z Z Z

x
y
z

γ β
γ α
β α

−∆ ∆ ∆ 
 ∆ −∆ ∆ ∆ =
 −∆ ∆ ∆
 
 

M

4-5

45 4 4p ×=M I 45

1 0
1 0 0
0 1 0

0 0 0 1

YA ZA

YA
p
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γ β
γ
β

−∆ ∆ 
 ∆ ∆ =
 −∆
 
 

M

45

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

s

A A
A A

 
 − =
 
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Ì 45

1
1

1
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s
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ordinate systems. (2) Each coordinate system’s X-, Y-, Z-axis should 
be parallel to the X-, Y-, Z-axis of the other coordinate systems [23].

In MBS theory, the relation between the classical bodies of MBS 
can be expressed bymatrices. The characteristic matrices established 
for the selected machining center are listed in Table 5.

The coordinate of the tool forming point in the coordinate system 
of the tool is:

	
T

, , ,1t tx ty tzP P P =  P 	 (1)

and the coordinate of the workpiece forming point in the coordinate 
system of the workpiece can be written as:

	
T

, , ,1w wx wy wzP P P =  P 	 (2)

Ideally, the machine tool is without error; the tool forming point 
and the workpiece forming point will overlap together. As a result, 
the constraint equation for precision finishing under ideal conditions 
is given by:

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

1 1 1 1

1 1

, 0 , 0
k k k k u u u u

n n

k u

t widealL t L t p L t L t s L w L w p L w L w s
k n L t u n L w

− − − −

= =

= = = =

   
=   

      
∏ ∏M M P M M P

(3)

By rearranging the terms, Eq. (3) can be rewritten as follows:

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

1 1 1 1

1
1 1

, 0 , 0
u u u u k k k k

n n

u k

wideal tL w L w p L w L w s L t L t p L t L t s
u n L w k n L t

− − − −

−
= =

= = = =

   
=    
      
∏ ∏P M M M M P

(4)

The machining accuracy is finally related to the relative displace-
ment error between the tool forming points of the machine and the 
workpiece. The constraint equation for precision finishing under ac-
tual conditions can be written as:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1 1 1 1

1 1 1 1

1
1

, 0

1

, 0

           

u u u u u u u u
n

k k k k k k k k
n

u

wactual L w L w p L w L w p L w L w s L w L w s
u n L w

k

tL t L t p L t L t p L t L t s L t L t s
k n L t

− − − −

− − − −

−
=

= =

=

= =

 
= ∆ ∆ 
  
 

× ∆ ∆ 
  

∏

∏

P M M M M

M M M M P

(5)

The comprehensive volumetric error caused by the gap between 
the actual forming point and the ideal forming point can be expresses 
as:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1 1 1 1

1 1 1 1

1

, 0

1

, 0

     -

u u u u u u u u
n

k k k k k k k k
n

u

widealL w L w p L w L w p L w L w s L w L w s
u n L w

k

tL t L t p L t L t p L t L t s L t L t s
k n L t

− − − −

− − − −

=

= =

=

= =

 
= ∆ ∆ 
  
 

∆ ∆ 
  

∏

∏

E M M M M P

M M M M P
	(6)

The comprehensive volumetric error mode of the horizontal pre-
cision machining center can be obtained from the characteristic ma-
trices in Table 4 and Eq. (6). Similarly, the general volumetric error 
model for the machine tool can be established as follows:

	 ( ), ,t=E E G P P 	 (7)

where [ ]T, , ,0X Y ZE E E=E
 

is the volumetric error vector; 

1, 2 29[ ,..., ]Tg g g=G is the vector consisting of 29 geometric errors, 

and Xx∆ , Xy∆ , Xz∆ , Xα∆ , Xβ∆ , Xγ∆ , Yx∆ , Yy∆ , Yz∆ , Yα∆ , Yβ∆ ,

Yγ∆ , Zx∆ , Zy∆ , Zz∆ , Zα∆ , Zβ∆ , Zγ∆ , Ax∆ , Ay∆ , Az∆ , Aα∆ , Aβ∆

, Aγ∆ , XYγ∆ , XZβ∆ , YZα∆ , YAγ∆ , ZAβ∆ = 1g , 2g , 3g , 4g , 5g , 6g ,

7g , 8g , 9g , 10g , 11g , 12g , 13g , 14g , 15g , 16g , 17g , 18g , 19g , 20g , 21g ,

22g , 22g , 23g , 24g , 25g , 26g , 27g , 28g , 29g ; [ ]T, , ,0x y z=P repre-
sents the position vector of the motion axes of the machine center.

3. Machining accuracy reliability analysis based on Fast 
Markov Chain simulations

The machining accuracy reliability refers to the ability of the ma-
chine tool to perform at its specified machining accuracy under the 
stated conditions for a given period of time. In general, the volumetric 
machining errors can be decomposed into the corresponding X-, Y-, 
Z-direction components, and if the machining accuracy is lower than 
the specified requirement in the X-, Y- and Z-direction, respectively, 
the machining accuracy can be considered to be violated.

3.1.	 Failure mode and failure probability

The comprehensive volumetric error mode of the machine center 
can be written as:

	 ( ) ( ) ( ) ( ) T, , ,0X Y ZE E E= =   E E G G G G 	 (8)

The maximum permissible volumetric error of the machine tool 

is ( )T, , ,0X Y Ze e e=e , where , ,X Y Ze e e  indicates the maximum per-
missible volumetric error in X-, Y-, Z-direction, respectively, and the 
function matrix can be expressed as follow:

[ ] ( ) ( ) ( )

( )
( )
( )

T, , ,0

0

X

Y
X X Y Y Z Z

Z

H
H

E e E e E e
H

 
 
 = − =  − − −  ==   
 
  

G
G

F E e G G G
G

(9)

The machining accuracy of the NC machine tool shows the fol-
lowing seven failure modes:

	 { }1 0,  0 and 0 X Y ZM H H H= ≥ ≤ ≤ 	 (10)

	 { }2 0,  0 and 0 X Y ZM H H H= ≤ ≥ ≤ 	 (11)

	 { }3 0,  0 and 0 X Y ZM H H H= ≤ ≤ ≥ 	 (12)

	 { }4 0 , 0 and 0 X Y ZM H H H= ≥ ≥ ≤ 	 (13)

	 { }5 0 , 0 and 0 X Y ZM H H H= ≥ ≤ ≥ 	 (14)

	 { }6 0 , 0 and 0 X Y ZM H H H= ≤ ≥ ≥ 	 (15)

	 { }7 0, 0 and 0X Y ZM H H H= ≥ ≥ ≥ 	 (16)
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In Eqs.(10) to (12), 1M  2M  and 3M  represent the cases where 
the machining accuracy of the machine tool in either the X-, Y- or 
Z-direction cannot meet the maximum permissible volumetric error. 

In Eqs.(13) to (15), 4M  5M  and 6M  represent the cases where the 
machining accuracy of the machine tool cannot meet the maximum 
permissible volumetric error in two of the three directions. And In 

Eq.16, 7M  represent the case where the machining accuracy of the 
machine tool cannot meet the maximum permissible volumetric error 
in all of the three directions.

The failover domains for each of the failure modes are as fol-
lows:

( ) ( ) ( ){ }1 : 0, 0  0X Y ZF H H and H= ∈ ≥ ∈ ≤ ∈ ≤G G G G G G G  (17)

( ) ( ) ( ){ }2 : 0, 0  0X Y ZF H H and H= ∈ ≤ ∈ ≥ ∈ ≤G G G G G G G  (18)

( ) ( ) ( ){ }3 : 0, 0  0X Y ZF H H and H= ∈ ≤ ∈ ≤ ∈ ≥G G G G G G G  (19)	

( ) ( ) ( ){ }4 : 0, 0  0X Y ZF H H and H= ∈ ≥ ∈ ≥ ∈ ≤G G G G G G G  (20)	

( ) ( ) ( ){ }5 : 0, 0  0X Y ZF H H and H= ∈ ≥ ∈ ≤ ∈ ≥G G G G G G G  (21)

( ) ( ) ( ){ }6 : 0, 0  0X Y ZF H H and H= ∈ ≤ ∈ ≥ ∈ ≥G G G G G G G   (22)

( ) ( ) ( ){ }7 : 0, 0  0X Y ZF H H and H= ∈ ≥ ∈ ≥ ∈ ≥G G G G G G G  (23)

In the reliability analysis of the machining accuracy, the failure 
probability P  can be defined as the integral of the joint probability 
density function ( )f G  for geometric errors in the failover domain F
, so the failure probabilities of the different failure modes can be ex-
pressed as:

	 ( ) { } ( )d
i

i
iF FP P F f= ∈ = ∫ ∫G G G 	 (24)

where, 1,2 7i =  , and i  is the number of the failure modes.

The overall failure probability FP  of the machining accuracy can 
then be derived from basic principles of probability theory and statis-
tics as follows:

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6 7
F F F F F F F FP P P P P P P P= + + + + + + 	 (25)

3.2.	 Conversion of the correlated normal variables into inde-
pendent standard normal variables

During actual processing, the geometric errors of the machine tool 
are correlated to each other and the effect of this correlation on the 
failure probability of the machining accuracy cannot be ignored. For 
a practical reliability analysis of the machining accuracy, in order to 
account for the actual situation, the correlation between the geomet-
ric errors of the machine tool must be taken into account. Therefore, 
the correlated geometric errors were first converted into independent 
standard normal random variables. Then, the reliability analysis meth-
od in independent space was used to determine the failure probability 
of the machining accuracy.

The n geometric errors of the machine tool can be represented as 
n-dimensional normal random variables ( )T1 2, , ng g g=G 

. Because 
the g eometric errors are correlated, the probability density function 
( )f G  of the geometric error vector G  can be expressed as:

f
n

( ) expG = ( ) − −( ) −( )





− − −2 1
2

2
1
2 1π C G C GG G G Gµµ µµT    (26)

where:

1 1 2 1 2 1 3 1 3 1 1

1 2 1 2 2 2 3 2 3 2 2

1 3 1 3 2 3 2 3 3 3 2

1 1 2 2 3 2

2

2

2

2

n n

n n

n n

n n n n n n n

g g g g g g g g g g g g g

g g g g g g g g g g g g g

g g g g g g g g g g g g g

g g g g g g g g g g g g g

σ ρ σ σ ρ σ σ ρ σ σ

ρ σ σ σ ρ σ σ ρ σ σ

ρ σ σ ρ σ σ σ ρ σ σ

ρ σ σ ρ σ σ ρ σ σ σ

 
 
 
 
 =
 
 
 
 
 

GC







  



(27)

represents the covariance matrix of the geometric errors G ; 1−
GC  

is the inverse matrix of GC ; GC is the determinant of GC ; and 

µµG = ( )µ µ µg g gn1 2
, ,

T
 is the vector composed of the mean values 

of the geometric errors, 
igµ and 

igσ  represent the mean value and the 

variance of geometric error ( )1,2,3, ,ig i n= 
,and 

i jg gρ  is the cor-

relation coefficient of ig  and jg .
According to the basic principles of linear algebra, there must 

be an orthogonal matrix A  to convert the correlated normal vari-

ables ( )T1 2, , ng g g=G   into independent normal variables 

( )T1 2, , ny y y=y   as follows:

( ) ( ) ( ) ( )
21

1 22 1 2
1

12 exp
2

n n
i

Y n
ii

yf f µ π λ λ λ
λ

−−−

=

 
= + = −  

 
∑G Gy A y    (28)

and:

	 y = −( ) ( )A G Gµµ , ,y Ni i 0 λ 	 (29)

where, λ λ λ1 2, , n  are the eigenvalues of the covariance matrix GC  . 
Furthermore, the column vectors of the orthogonal matrix A  are 

equal to the orthogonal eigenvectors of the covariance matrix GC .

Based on the linear transformation y = A G G−( )µµ , the correla-

ted normal variables ( )T1 2, , ng g g=G   were converted to the inde-

pendent normal variables ( )T1 2, , ny y y=y  . Then, the independent 

normal variables ( )T1 2, , ny y y=y   were converted into indepen-

dent standard normal random variables ( )T1 2, , nu u u=u   by using 
the following function.

	 u i ni
i y

y

i

i

i

i

=
−

= =( )
y yµµ

σ λ
1 2, , 	 (30)
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Next, the failover domain ( )F G  and the performance function 

( )H G  in the related space were converted to the failover domain 

( )F u . Finally, the failure probabilities of each failure modes can be 
rewritten as:

( ) ( )( ) ( )( ) ( )( ) ( )
i i i

i
G Y UF F F FP f d f d f d= = =∫ ∫ ∫ ∫ ∫ ∫G y uG G y y u u  

(31)

3.3.	 Fast Markov Chain simulation method for estimating 
the failure probability

There are many different methods to calculate the reliability of 
the machining accuracy based on numerical simulations which can 
be used for either analyzing the single failure mode-reliability or the 
multiple failure modes-reliability. However, the Markov chain meth-
od has so far not been used to analyze the reliability of the machining 
accuracy.

Because samples in the failover domain can be simulated effi-
ciently by adopting the Markov chain method, for the general non-

linear limit state equation ( ) ( )
( )
( )
( )

0
= = 0

0

X

U G Y

Z

H
H H H

H

 =
 =
 =

G
u G G

G
, the 

Markov chain method can be used to determine the most probable 
failure point in the failover domain which is referred to as the design 
point. Through the design point, the linear limit state equation 

( )=0L u  which has the same design point has the non-linear limit 

state equation ( ) ( )
( )
( )
( )

0
= = 0

0

X

U G Y

Z

H
H H H

H

 =
 =
 =

G
u G G

G
 can be obtained in the 

independent standard normal space.
Based on the multiplication theorem in probability theory, the fol-

lowing two equations can then be established.

	 { } { } { }H L H L HP F F P F P F F= 	 (32)

	 { } { } { }H L L H LP F F P F P F F= 	 (33)

where, { }= :H iF F→ ∈u u G , ( ){ }= : 0LF L ≤u u , 

{ } ( ){ }= 0LP F P L ≤u  and { } { }=H iP F P F . { }L HP F F  and 

{ }H LP F F  are conditional probabilities.

Thus, the failure probability FP  can be expressed as follows: 

	 ( ) ( ) { } { } { }
{ }

i H L
i H LF

L H

P F F
P P F P F P F

P F F
= = = 	 (34)

where, { }
{ }

H L

L H

P F F
P F F

 can be defined as the scaling factor S :

	
{ }
{ }

H L

L H

P F F
S

P F F
= 	 (35)

Then Eq.(35) can be simplified as follows:

	 ( ) { }i
LFP P F S=  	 (36)

The probability density function of the samples which belong to 

the failover domain HF  can be expressed as follows:

	 ( ) ( ) ( )H U
H H

H

I f
q F

P
=

u u
u 	 (37)

where, ( )HI u  is the indicator function of the non-linear performance 

function ( )H u , and 

	 ( ) ( )
( )

1,   0
0,   0H

H
I

H
 <=  ≥

u
u

u
	 (38)

According to the basic principles of Markov chain simulations, 
the transformation from one state to another state of the Markov chain 
is controlled by the proposal distribution function ( )f ∗ å u . Both a 
symmetrical n-dimensional normal distribution and an n-dimensional 
uniform distribution can be used as a suggested distribution of the 
Markov chain. In this paper, the symmetrical n-dimensional uniform 
distribution was selected as the suggested distribution:

	 ( ) 1
1 / ,   

2
0,              Other            

n
k

k k k
k

ll u
f

s

ε∗
=


− ≤= 




∏å u 	 (39)

where, kε  and ku  represent the kth component of the n-dimensional 

vector å and u  respectively. kl  represents the side length of the n-di-

mensional polyhedron in the ku -direction, and u  is the center of the 

n-dimensional polyhedron. Furthermore, kl  determines the maximum 
allowed distances from the next sample to the current sample.

Based on practical engineering experience and numerical algo-

rithms, a point in the failover domain HF  was selected as the initial 

state of the Markov chain and denoted as 0u . The jth state ju  of the 
Markov chain was then determined by the proposal distribution func-
tion and according to the Metropolis-Hastings guidelines based on the 
j-1th state 1ju − . First, a candidate state å  was obtained through the 
proposal distribution function ( )1jf ∗ −å u . Then, the ratio r  of the 

candidate state å ’s conditional probability density function and the 

state 1j−u ’s conditional probability density function can be expressed 
as follows:

	 ( ) ( )1/H j Hr q F q F−= å u 	 (40)

At last, the next state ju  was determined according to the 
Metropolis-Hastings guidelines:
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{ } [ ]
{ } [ ]1

,      min 1, random 0,1

,  min 1, random 0,1j
j

r

r−

 >= 
≤

å
u

u
	 (41)

where, [ ]random 0,  1  represents the random number which obeys the 

uniform distribution in [ ]0,  1 .

HN  states { }0 1 1, ,
HN −u u u

of the Markov chain can be gener-
ated via the above method, and they are sample points of the probabil-

ity density function ( )H Hq Fu . We selected the point which has the 

maximum value of ( )Uf u  in the failover domain HF  from the HN  
sample points of the probability density function ( )H Hq Fu . This 
point is the maximum likelihood point and was denoted as 

( )1 2, , , nu u u∗ ∗ ∗ ∗=u  .

In the independent standard normal space, the linear limit state 
equation with the same maximum likelihood point of the failover do-

main HF  can be expressed as follows:

	 ( ) ( )( )T 0L ∗ ∗= − − =u 0 u u u 	 (42)

The corresponding probability of failure is:

	 { } ( ) ( ) ( )2 2 2
1 2L nP F u u u∗ ∗ ∗ 

= Φ − + + +  
 


	 (43)

where, ( )Φ 
 is the distribution function of the standard normal vari-

able.

When plugging the HN  sample points into Eq.(42), the number 

of samples falling into ( ){ }: 0LF L= ≤u u  can be denoted as L HN .

Then, the estimation of the condition probability { }L HP F F  can 
be written as follows:

	 { } L H
L H

H

N
P F F

N
= 	 (44)

Similarly, the condition probability { }H LP F F  can be obtained 

using the Markov chain method to simulate the sample point in the 

failover domain LF . The joint probability density function of the 

sample points in the failover domain LF  can be expressed as fol-
lows:

	 ( ) ( ) ( )L U
L L

L

I f
q F

P
=

u u
u 	 (45)

LN  sample points in the failover domain can be obtained through 
the Markov chain simulations. By plugging these sample points into 

( )H u  and calculating the values of ( )H u , the number of sample 

points falling into the failover domain ( ){ }: 0HF H= ≤u u  can be 

obtained and recorded as H LN .
Then, the estimation of the condition probability { }L HP F F  and 

the scaling factor S can be written as follows:

	 { } H L
H L

L

N
P F F

N
= 	 (46)

	 

{ }
{ }

H L H L H

L L HL H

P F F N NS
N NP F F

= =  	 (47)

Because the machine tool has several failure modes, the failure 
probability of each failure mode should be calculated individually. 

Let , 1,2, 7H iF F i= =   , then the ( ){ }i
LP F  and ( )iS  correspond-

ing to the failure modes can be obtained through. 

	 ( ) ( ){ } ( )   1,2, 7i i i
F LP P F S i= =  	 (48)

The comprehensive failure probability of the machining accuracy 
can finally be expressed as follows:

	 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6 7+ + + +F F F F F F F FP P P P P P P P= + + 	 (49)

4. Machining accuracy reliability sensitivity analysis 
based on solving the integral of the failure prob-
ability

The machining accuracy reliability sensitivity coefficient is gener-
ally defined as the partial derivative of the failure probability for each 
failure mode with respect to the probability distribution parameters of 
the kth geometric error. This can be expressed as follows:

	 ( )
( ) ( )d

k i

i
i F

F
k k

fP
Sµ µ µ

∂∂
= =
∂ ∂∫ ∫

G
G

	 (50)

	 ( )
( ) ( )d

k i

i
i F

F
k k

fP
Sσ σ σ

∂∂
= =
∂ ∂∫ ∫

G
G

	 (51)

where, 1,2, ,7i =  ; 1,2, ,nk =  ; and n is the number of geometric 

errors. kµ  is the mean value of the kth geometric error. kσ  is the 

standard deviation of kth geometric errors. ( )
k

iSµ  is the machining ac-

curacy reliability sensitivity about the mean value kµ  with respect 

to the failure probability for ith failure mode. ( )
k

iSσ  is the machining 

accuracy reliability sensitivity about the standard deviation kσ  with 
respect to the failure probability for the ith failure mode.

Next, we defined the following regularized reliability sensitivity 
coefficients:
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	 ( )
( )

( )k

i
i kF

i
k F

P
SA

P
µ

σ
µ

∂
=
∂

	 (52)

	 ( )
( )

( )k

i
i kF

i
k F

P
SA

P
σ

σ
σ

∂
=
∂

	 (53)

Then, we transformed Eqs.(52) and (53) into their corresponding 
integral form:

	 ( )
( )

( ) ( )
( ) d

ik

i k
F i

k F

f f
SA

f P
µ

σ
µ

 ∂  =
 ∂  

∫ ∫
G G

G
G

 	 (54)

	 ( )
( )

( ) ( )
( ) d

ik

i k
F i

k F

f f
SA

f P
σ

σ
σ

 ∂  =
 ∂  

∫ ∫
G G

G
G

 	 (55)

Obviously Eq. (54) and (55) can be expressed as the mathemati-

cal expectation in the failure domain iF :

	 ( )
( )

( )
ik

i k
F

k

f
SA E

fµ
σ

µ
 ∂

=  
∂  

G
G

	 (56)

	 ( )
( )

( )
ik

i k
F

k

f
SA E

fσ
σ

σ
 ∂

=  
∂  

G
G

	 (57)

where, [ ]iFE   is the mathematical expectation in the failure domain 

iF .

Through Eqs.(29) and (30), the sample points ( ) ( ) ( ){ }0 1 1, ,
H

i i i
N −u u u  

can be converted to ( ) ( ) ( ){ }0 1 1, ,
H

i i i
N −G G G . By plugging 

( ) ( ) ( ){ }0 1 1, ,
H

i i i
N −G G G  into the following formulas, the regularized 

reliability sensitivity coefficients can be eventually obtained:
	

	 

( )

( )
( )1

0

1 H

k

Ni k

H k

f
SA

N fµ
σ

µ

− ∂
=

∂
∑

G
G

	 (58)

	 

( )

( )
( )1

0

1 H

k

Ni k

H k

f
SA

N fσ
σ

σ

− ∂
=

∂
∑

G
G 	 (59)

Then, the general reliability sensitivity coefficients can be ex-
pressed as follows:

	 ( )
( )



( ) ( )

k k

i iii F F

k k

P P
S SAµ µµ σ

∂
= =
∂


	 (60)

	 ( )
( )



( ) ( )

k k

i iii F F

k k

P P
S SAσ σσ σ

∂
= =
∂

 	 (61)

5. Application and improvement

The machine tool shown in Fig.1 was selected as an example to 
demonstrate the method. The six position dependent geometric errors 
of each prismatic joint were directly measured using a dual-frequency 
laser interferometer[15] and an electronic level. XD sensor was used 
to receive and reflect the laser in the measurement process. And it 
was also used to detect the angle error and the straightness error of the 
measuring process. The squareness errors were measured using a 
dial indicator and a flat ruler. A photograph of the experimental setup 
is shown in Fig.3.

Through a statistical analysis of the obtained sample data, the 
probability distribution of the geometric errors can be obtained. Tak-
ing the positioning error at Δxx= 200mm, y=400mm, z=300mm as an 
example, the  geometric error can be described by a normal distri-
bution. Actually, the experimental results showed that each position-
dependent geometric error can be described by a normal distribution 
[35]. Table 6 lists the values obtained for the position-independent 
errors. Table 7 compares the mean values (M) and the variance values 
(V) of the probability distributions used to describe the position-de-
pendent geometric errors at x = 200mm, y = 400mm, z = 300mm.

Using the proposed method, the failure probabilities were calcu-
lated for each failure mode at x= 200 mm, y=400mm, z=300mm, and 
the results are listed in Table 8. The results of machining accuracy 
reliability sensitivity analysis are presented in Table 9.

Nine evenly spaced test points (a total of 33 test points) were se-
lected along each body diagonal of the machine tool’s working space, 
zas shown in Fig.4. The results of the sensitivity analysis at each test 
point were obtained using the method described above. Then, a sensi-
tivity analysis for the whole working space was conducted employing 
the weighted average method.

The failure probability of failure mode iM , at the test point “j”,  

was defined as ( )ij
FP , and the failure probability of failure mode iM  

for the whole working space can be defined as 
( )i
FP . Furthermore, the 

machining accuracy reliability sensitivity of the mean value kµ  of ge-

ometric error kg  for the ith failure mode iM , at the test point “j”, was 

Fig.3 Photograph of the experimental setup.
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defined as ( )
k

ijSµ , and the machining accuracy reliability sensi-

tivity of the variance kσ  of geometric error kg  at the test point 

“j” , was defined as ( )
k

ijSσ . Then, for the whole working space, 
the machining accuracy reliability sensitivity of the mean value 

kµ  and the variance kσ  of geometric error kg  for the ith failure 

mode iM , can be defined as 
( )

k

i
S µ  and 

( )
k

i
Sσ , respectively.

	      
( ) ( )33

1

1=
33k k

i ij

j
S Sµ µ

=
∑ 	 (62)

	       ( ) ( )33

1

1=
33k k

i ij

j
S Sσ σ

=
∑ 	 (63)

The results obtained for the failure probabilities of the different 
failure modes and the machining accuracy reliability sensitivities of 

Fig. 4. Distribution of the test points.

Table 6.	 Values obtained for the position-independent errors.

Sequence Number Parameter Value(mm)

1 0.0039/500

2 0.0037/500

3 0.0037/500

4 0.012/300

5 0.012/300

Table 7.	 Probability distributions of position-dependent geometric errors

Sequence 
Number

Param-
eter

Probability distribu-
tion M(mm) V(mm2)

1 ∆xx normal distribution 0.0040 0.05/6

2 ∆yx normal distribution 0.0039 0.05/6

3 ∆zx normal distribution 0.0038 0.05/6

4 ∆αx normal distribution 0.0025/1000 0.03/6000

5 ∆βx normal distribution 0.0027/1000 0.06/6000

6 ∆γx normal distribution 0.00242/1000 0.05/6000

7 ∆xy normal distribution 0.0038 0.04/6

8 ∆yy normal distribution 0.0040 0.05/6

9 ∆zy normal distribution 0.0044 0.04/6

10 ∆αy normal distribution 0.00253/1000 0.05/6000

11 ∆βy normal distribution 0.00242/1000 0.04/6000

12 ∆γy normal distribution 0.00224/1000 0.04/6000

13 ∆xz normal distribution 0.0035 0.03/6

14 ∆yz normal distribution 0.0041 0.03/6

15 ∆zz normal distribution 0.0043 0.05/6

16 ∆αz normal distribution 0.00233/1000 0.03/6000

17 ∆βz normal distribution 0.00259/1000 0.04/6000

18 ∆γz normal distribution 0.00252/1000 0.03/6000

19 ∆xA normal distribution 0.0058 0.017/6

20 ∆yA normal distribution 0.0062 0.021/6

21 ∆zA normal distribution 0.0065 0.024/6

22 ∆αA normal distribution 0.00583/1000 0.02/6000

23 ∆βA normal distribution 0.03219/1000 0.02/6000

24 ∆γA normal distribution 0.00692/1000 0.04/6000

Table 8.	 Failure probabilities of the different failure modes at x= 200 mm, 
y=400mm, z=300mm

Failure mode 1M 2M 3M 4M 5M 6M 7M

Failure probability (%) 0.09 0.81 0.55 0.111 0.77 0.29 0.35

Table 9.	 Results of the machining accuracy reliability sensitivity analysis at 
x = 200mm, y = 400mm, z = 300mm

Geo-
metric 
errors

Sensitivity coefficient

1M 2M 3M 4M 5M 6M 7M

∆xx 0.0304 0.0154 0.0681 0.0318 0.0493 0.0251 0.0789

∆yx 0.0352 0.0858 0.0591 0.0432 0.0434 0.0842 0.0321

∆zx 0.0010 0.0540 0.0135 0.0503 0.0430 0.0098 0.0278

∆αx 0.0572 0.0618 0.0697 0.0252 0.0334 0.0093 0.0205

∆βx 0.0571 0.0390 0.0485 0.0005 0.0275 0.0742 0.0556

∆γx 0.0120 0.0516 0.0682 0.0817 0.0725 0.0539 0.0775

∆xy 0.0122 0.0591 0.0348 0.0720 0.0364 0.0303 0.0458

∆yy 0.0674 0.0405 0.0453 0.0369 0.0015 0.0270 0.0756

∆zy 0.0488 0.0271 0.0632 0.0573 0.0419 0.0768 0.0396

∆αy 0.0341 0.0109 0.0649 0.0009 0.0058 0.0863 0.0458

∆βy 0.0518 0.0369 0.0626 0.0117 0.0249 0.0176 0.0004

∆γy 0.011h8 0.0295 0.0085 0.0276 0.0387 0.0161 0.0170

∆xz 0.0824 0.0133 0.0342 0.0860 0.0699 0.0638 0.0021

∆yz 0.0798 0.0454 0.0155 0.0066 0.0677 0.0501 0.0689

∆zz 0.0447 0.0406 0.0061 0.0586 0.0745 0.0871 0.0476

∆αz 0.0504 0.0496 0.0384 0.0443 0.0795 0.0078 0.0793

∆βz 0.0205 0.0367 0.0659 0.0389 0.0091 0.0014 0.0398

∆γz 0.0864 0.0026 0.0361 0.0685 0.0613 0.0322 0.0433

∆xA 0.0577 0.0382 0.0707 0.0741 0.0098 0.0552 0.0582

∆yA 0.0271 0.0197 0.0064 0.0399 0.0494 0.0086 0.0302

∆zA 0.0152 0.0581 0.0547 0.0362 0.0241 0.0224 0.0131

∆αA 0.0329 0.0496 0.0095 0.0415 0.0559 0.0597 0.0750

∆βA 0.0017 0.0771 0.0434 0.0577 0.0097 0.0829 0.0046

∆γA 0.0821 0.0572 0.0128 0.0086 0.0707 0.0182 0.0213
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the whole working space are listed in Table 10 and Table 11, respec-
tively.

In order to study the machining accuracy reliability of the select-
ed machining center in a real processing environment, the machining 
center has been used to machine a specific part. A photograph of the 
machining site is shown in Fig.5. The main parameters for the ma-
chining process are listed in Table 12.

In a modern advanced machining line, in order to improve the 
efficiency and production rhythm of the 
whole automatic production line, one 
machine only needs to complete one or 
just a few machining steps. For the se-
lected machine, in a production line, it 
only needs to machine the machining 
surface of the reduction gearbox which 
has been marked in Fig.5. The machin-
ing quality of the machining surface is 
affected by the machining accuracy reli-
ability of the machine center in the Z-

direction. As shown in Eqs.(10) to (16), only 3M , 5M , 6M  and 7M  
are related to the machining accuracy reliability of the machine center 

in Z-direction. As shown in Table 9, the failure probabilities of 3M  

and 6M  are greater than the failure probabilities of 5M  and 7M . So 

3M  and 6M  are the critical failure modes which significantly affect 
the machining quality of the machining surface.

As shown in Table 8, for failure mode 3M  , the sensitivity coef-

ficients obtained for  and  were highest. For the failure mode 6M , the 
sensitivity coefficient of  and  were the highest. Thus,, , and can be 

identified as the most crucial errors that affect 3M  and 6M .
Because the geometric errors of the machine tool are linked to the 

geometric accuracy of the feeding components, there exist mapping 
relationships between the basic geometric errors and the accuracy pa-
rameters of the feeding components. The corresponding relationships 
between the basic geometric errors and the accuracy parameters of the 
components [2] are illustrated in Table 13. 

Consequentially, the following modifications can be adopted to 
improve the machining accuracy: (1) Improving the straightness in 
the vertical plane of the X-guideway; (2) Improving the straightness 
in the horizontal plane of the Z-guideway; (3) Improving the parallel-
ism of the Z-guideway; (4) Switching to a higher precision screw for 
the A-axis.

The failure probabilities of the different failure modes for the 
whole working space after modification were analyzed and are listed 
in Table 14. The comparison revealed that the failure probabilities 
were reduced after modification, and the failure probabilities of the 
failure modes and  were greatly reduced after modification. Thus, we 
can conclude that the proposed machining accuracy reliability sensi-
tivity analysis method is both feasible and effective.

Table 10.	 Failure probabilities of the different failure modes for the whole 
working space

Failure mode 1M 2M 3M 4M 5M 6M 7M

Failure probability(%) 0.06 0.71 1.06 0.46 0.43 0.95 0.40

Table 11.	 Results of the machining accuracy reliability sensitivity analysis for 
the whole working space

Geo-
metric 
errors

Sensitivity coefficient

1M 2M 3M 4M 5M 6M 7M

∆xx 0.0774 0.0358 0.0099 0.0318 0.0637 0.0305 0.0046

∆yx 0.0082 0.0613 0.0089 0.0560 0.0160 0.0196 0.0296

∆zx 0.0398 0.0236 0.0623 0.0577 0.0366 0.0691 0.0587

∆αx 0.0817 0.0032 0.0349 0.0442 0.0343 0.0164 0.0423

∆βx 0.0134 0.0342 0.0173 0.0069 0.0572 0.0402 0.0441

∆γx 0.0381 0.0435 0.0083 0.0813 0.0226 0.0302 0.0883

∆xy 0.0435 0.0083 0.0418 0.0306 0.0535 0.0412 0.0506

∆yy 0.0247 0.0502 0.0119 0.0056 0.0713 0.0574 0.0436

∆zy 0.0380 0.0364 0.0543 0.0509 0.0702 0.0226 0.0472

∆αy 0.0083 0.0483 0.0604 0.0249 0.0007 0.0174 0.0838

∆βy 0.0623 0.0684 0.0413 0.0554 0.0429 0.0247 0.0059

∆γy 0.0539 0.0413 0.0414 0.0456 0.0599 0.0207 0.0822

∆xz 0.0743 0.0690 0.0702 0.0362 0.0659 0.0071 0.0226

∆yz 0.0289 0.0204 0.0737 0.0264 0.0273 0.0693 0.0147

∆zz 0.0074 0.0237 0.0462 0.0603 0.0693 0.0555 0.0677

∆αz 0.0186 0.0167 0.0570 0.0175 0.0393 0.0416 0.0156

∆βz 0.0296 0.0193 0.0318 0.0462 0.0190 0.0403 0.0624

∆γz 0.0724 0.0284 0.0785 0.0499 0.0676 0.0616 0.0835

∆xA 0.0761 0.0261 0.0073 0.0606 0.0014 0.0682 0.0008

∆yA 0.0411 0.0395 0.0448 0.0297 0.0114 0.0439 0.0457

∆zA 0.0176 0.0687 0.0319 0.0821 0.0779 0.0284 0.0102

∆αA 0.0679 0.0871 0.0788 0.0651 0.0187 0.0680 0.0296

∆βA 0.0350 0.0679 0.0549 0.0228 0.0087 0.0626 0.0396

∆γA 0.0419 0.0786 0.0322 0.0122 0.0646 0.0637 0.0267

Fig.5 Photograph of the machining site.

Table 12.	 Main parameters of the machining process.

No Tool Illustration Axial cutting 
depth (mm)

Radial cutting 
depth (mm)

Spindle speed 
(r/min)

Feed speed 
(mm/min)

1 Milling cutter 
F4AS2000ADL38

Rough ma-
chining 2 10 12000 4000

2 Boring tool 
SS20FBHS24

Precision bor-
ing machining 2 0.2 12000 2000

3 Face milling cutter 
D125

Finish-milling 
top surface 0.2 10 3000 3000
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6. Conclusions

In precision manufacturing, the geometric errors of a machine tool 
considerably affect the machining accuracy reliability of the machine 
tool, which directly determines the geometrical and dimensional accu-
racy of the machined product. Therefore, establishing the relationship 
between the geometric errors and the machining accuracy reliability 
and then efficiently improving the machining accuracy reliability are 
the key steps required to improve the achievable product quality.

In this paper, a new approach for analyzing the sensitivity of the 
machining accuracy reliability of machine tools based on fast Markov 

chain simulations was proposed. This 
method has the following two charac-
teristics:

(1) The proposed analytical method 
can be used to establish the relation-
ship between the model of the stochas-
tic geometric errors and the machining 
accuracy reliability and to identify the 
key geometric errors that have the big-
gest impact on the machining accuracy 
reliability. According to the analysis re-
sults, the crucial geometric errors can be 
purposefully modified and the machin-
ing accuracy reliability can be dramati-
cally improved. In addition, the results 
of the sensitivity analysis can also offer 
a good reference for an optimal design, 
accuracy control and error compensa-
tion of a complex machine.

(2) Employing the proposed analyti-
cal method, we identified seven failure 

modes of the machine tool. In a modern advanced machining line, in 
order to improve the efficiency and production rhythm of the whole 
automatic production line, one machine only needs to complete one or 
just a few machining steps. Considering the actual needs, the failure 
modes of the machine tools which need to be improved can be isolat-
ed, thereby greatly reducing the maintenance costs of machine tools.

Despite the progress, it should be pointed out that the geometric 
errors analyzed in this paper are quasi-static and correspond to cold-
start conditions. The dynamic fluctuations caused by axis accelera-
tion, dynamic load-induced errors and thermal errors were not taken 
into consideration. Therefore, the geometric errors under working 
conditions, which of course are of great practical significance, need 
to be further studied.

Table 13.	 Corresponding relationships between the basic geometric errors and the accuracy parameters of the 
components

Basic geometric errors Accuracy parameters of the components

∆xx, ∆yy and ∆zz Cumulative pitch error of the lead screw

∆zx, ∆zy and ∆xz Straightness error in the vertical plane of the guideway

∆yx, ∆xy and ∆yz Straightness error in the horizontal plane of the guideway

∆αx, ∆βy and ∆γz Parallelism error of the guideway

∆βx, ∆αy and ∆βz Straightness error in the vertical plane of the guideway and length of the moving parts

∆γx, ∆γy and ∆αz Straightness error in the horizontal plane of the guideway and length of the moving parts

∆xA Center distance deviation of the worm gear pairs

∆yA Center plane error of the worm gear pair

∆zA Radial pulsation of the turbine gear ring

∆αA Cumulative pitch error of the gear pairs and length of the moving parts

∆βA Gear ring radial pulsation of the worm wheel and length of the moving parts

∆γA Center distance deviation of the worm gear pairs and length of the moving parts

Table 14.	 Failure probabilities of the different failure mode for the whole work-
ing space after modification.

Failure mode 1M 2M 3M 4M 5M 6M 7M

Failure probability (%) 0.058 0.70 0.60 0.46 0.40 0.61 0.36
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