PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Surface Urban Heat Islands in Belo Horizonte, Manaus, Salvador Bahia Using Remote Sensing and the Weather Research and Forecasting Modeling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The formation of urban heat islands is one of the effects related to urbanization, as it directly affects thermal comfort. There are several methodologies for its estimation, we can highlight the Gaussian (the best known), whose limitation focuses on the analysis of Gaussian surfaces. When the surface presents cases of poly-nucleated conglomerates, another type of approach (non-Gaussian) is recommended, such as the Quantile method. Therefore, this work seeks to estimate the intensity of surface urban heat islands (SUHI) in the long term (2001–2016) with both methodologies (Gaussians and Quantiles). Based on satellite data and the Weather Research and Forecasting (WRF) meteorological simulation, both with a special resolution of 5 km, for the metropolitan areas of Belo Horizonte, Manaus and Salvador, located in Brazil. Both methods indicate the formation of intense heat islands in the hottest months in the 3 cities studied, with less monthly variation compared to the surface temperature of the Earth’s surface.
Słowa kluczowe
Rocznik
Strony
163--177
Opis fizyczny
Bibliogr. 58 poz., rys.
Twórcy
  • Universidad Nacional Autónoma de Tayacaja Daniel Hernandez Morillo, Escuela Profesional de Ingeniería Forestal y Ambiental, Tayacaja, Perú
  • Universidade Federal do Espirito Santo, Department of Environmental Engineering, Vitoria, ES, Brazil
  • Instituto Geofísico del Perú, Calle Badajoz, 169, 15498 Urb. Mayorazgo IV Etapa, Ate, Lima, Perú
  • Universidad Nacional del Centro del Perú, Facultad de Ingeniería Civil, Huancayo, Perú
  • Universidad Nacional Intercultural de la Selva Central Juan Santos Atahualpa, Escuela Profesional de Ingeniería Ambiental, Chanchamayo, Perú
  • Universidad Continental, Facultad de Ingeniería, Huancayo, Perú
  • Universidad Tecnológica del Perú. Facultad de Ingeniería de Sistemas, Av. Circunvalación 449, 12002 El Tambo, Huancayo, Perú
  • Instituto de Geociências, Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rua Athos da Silveira Ramos 274, Cidade Universitária, Ilha do Fundão, 21.941-916, Rio de Janeiro, RJ, Brasil
  • Centro Universitario Senai Cimatec, Salvador, Brazil
Bibliografia
  • 1. Bahi H., Mastouri H., and Radoine H. 2020 Review of methods for retrieving urban heat islands,” in Materials Today: Proceedings, 27, doi: 10.1016/j.matpr.2020.03.272.
  • 2. Stewart I.D., Krayenhoff E.S., Voogt J.A., Lachapelle J.A., Allen M.A., and Broadbent A.M. 2021. Time Evolution of the Surface Urban Heat Island, Earth’s Futur., 9(10), doi: 10.1029/2021EF002178.
  • 3. Li C., Zhang N. 2021. Analysis of the Daytime Urban Heat Island Mechanism in East China, J. Geophys. Res. Atmos., 126(12), doi: 10.1029/2020JD034066.
  • 4. Song J., Wang J., Xia X., Lin R., Wang Y., Zhou M., Fu D. 2021 Characterization of urban heat islands using city lights: Insights from modis and viirs dnb observations. Remote Sens., 13(16), doi: 10.3390/rs13163180.
  • 5. Oke T.R. 1987. Boundary layer climates, Second edition.
  • 6. Dimoudi A., Kantzioura A., Zoras S., Pallas C., Kosmopoulos P. 2013. Investigation of urban microclimate parameters in an urban center. Energy Build., 64 doi: 10.1016/j.enbuild.2013.04.014.
  • 7. Parece T.E., Li J., Campbell J.B., Carroll D. 2016. Assessing urban landscape variables’ contributions to microclimates, Adv. Meteorol., 2016, doi: 10.1155/2016/8736263.
  • 8. Climate and Disaster Resilience in Cities, Manag. Environ. 2011. Qual. An Int. J., 22(5), doi: 10.1108/meq.2011.08322eaa.012.
  • 9. Joerin J., Shaw R. 2011. Mapping climate and disaster resilience in cities, Community, Environ. Disaster Risk Manag., 6, doi: 10.1108/S2040-7262(2011)0000006009.
  • 10. Voogt J.A., Oke T. R. 2003. Thermal remote sensing of urban climates, Remote Sens. Environ., doi: 10.1016/S0034-4257(03)00079-8.
  • 11. Zhou D., Zhao S., Zhang L., Sun G., Liu Y. 2015. The footprint of urban heat island effect in China, Sci. Rep., 5, doi: 10.1038/srep11160.
  • 12. Holt T. and Pullen J. 2007. Urban canopy modeling of the New York City metropolitan Area: A comparison and validation of single- and multilayer parameterizations, Mon. Weather Rev., 135(5), doi: 10.1175/MWR3372.1.
  • 13. Chen F. Kusaka H., Bornstein R., Ching J., Grimmond C.S.B., Grossman-Clarke S., Loridan T., Kevin W. Manning, Martilli A., Miao S., Sailor D., Salamanca F.P., Taha H., Tewari M., WangX., Wyszogrodzki A.A., Zhang C. 2011. The integrated WRF/ urban modelling system: Development, evaluation, and applications to urban environmental problems, Int. J. Climatol., 31(2), doi: 10.1002/joc.2158.
  • 14. Chen F., Yang X., and Zhu W. 2014. WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China, Atmos. Res., 138, doi: 10.1016/j.atmosres.2013.12.005.
  • 15. Mohammed A., Khan A., Santamouris M. 2021. On the mitigation potential and climatic impact of modified urban albedo on a subtropical desert city, Build. Environ., 206, doi: 10.1016/j.buildenv.2021.108276.
  • 16. Khodmanee S. and Amnuaylojaroen T. 2021. Impact of Biomass Burning on Ozone, Carbon Monoxide, and Nitrogen Dioxide in Northern Thailand, Front. Environ. Sci., 9, doi: 10.3389/fenvs.2021.641877.
  • 17. Han L. Yu X., Xu Y., Deng X., Yang L., Li Z., Lv D., Xiao M. 2021. Enhanced Summertime Surface Warming Effects of Long-Term Urbanization in a Humid Urban Agglomeration in China, J. Geophys. Res. Atmos., 126(21), doi: 10.1029/2021JD035009.
  • 18. Mughal M.O., Li X.X., Norford L.K. 2020. Urban heat island mitigation in Singapore: Evaluation using WRF/multilayer urban canopy model and local climate zones, Urban Clim., 34, doi: 10.1016/j.uclim.2020.100714.
  • 19. Jin M., Dickinson R.E., Zhang D.L. 2005. The footprint of urban areas on global climate as characterized by MODIS, J. Clim., 18(10), doi: 10.1175/JCLI3334.1.
  • 20. Cheval S., Dumitrescu A., Irașoc A., Paraschiv M.G., Perry M. and Ghent D. 2022.MODIS-based climatology of the Surface Urban Heat Island at country scale (Romania), Urban Clim., 41, doi: 10.1016/j.uclim.2021.101056.
  • 21. Siddiqui A., Kushwaha G., Nikam B., Srivastav S.K., Shelar A., Kumar P. 2021. Analysing the day/ night seasonal and annual changes and trends in land surface temperature and surface urban heat island intensity (SUHII) for Indian cities, Sustain. Cities Soc., 75, doi: 10.1016/j.scs.2021.103374.
  • 22. Tran H., Uchihama D., Ochi S., Yasuoka Y. 2006. Assessment with satellite data of the urban heat island effects in Asian mega cities, Int. J. Appl. Earth Obs. Geoinf., 8(1), doi: 10.1016/j.jag.2005.05.003.
  • 23. Angeles Suazo J.M., Flores Rojas J.L., Karam H. A., Arana Mallma G.R., Angeles Vasquez R.J. 2019. Isla de Calor Urbana Superficial en las Áreas Metropolitanas de Huancayo y Arequipa/Perú, Anuário do Inst. Geociências - UFRJ,.
  • 24. Angeles J., Angeles R., Rojas J.L.F., Karam H. 2019. Estimación de Isla de Calor Urbana Superficial en el Area Metropolitana de Iquitos/Peru, Anuário do Inst. Geociências - UFRJ, 42(1).
  • 25. Flores R.J.L., Pereira Filho A.J., and Karam H.A. 2016. Estimation of long term low resolution surface urban heat island intensities for tropical cities using MODIS remote sensing data, Urban Clim., doi: 10.1016/j.uclim.2016.04.002.
  • 26. Carrillo-Niquete G.A., Andrade J.L., ValdezLazalde J.R., Reyes-García C., Hernández-Stefanoni J.L. 2022. Characterizing spatial and temporal deforestation and its effects on surface urban heat islands in a tropical city using Landsat time series, Landsc. Urban Plan., 217, doi: 10.1016/j. landurbplan.2021.104280.
  • 27. Senevirathne D.M., Jayasooriya V.M., Dassanayake S.M., Muthukumaran S. 2021. Effects of pavement texture and colour on Urban Heat Islands: An experimental study in tropical climate, Urban Clim., 40, doi: 10.1016/j.uclim.2021.101024.
  • 28. Priya U.K. and Senthil R. 2021. A review of the impact of the green landscape interventions on the urban microclimate of tropical areas, Building and Environment, 205., doi: 10.1016/j. buildenv.2021.108190.
  • 29. Liu Y., Li Q., Yang L., Mu K., Zhang M. and Liu J. 2020. Urban heat island effects of various urban morphologies under regional climate conditions, Sci. Total Environ., 743, doi: 10.1016/j.scitotenv.2020.140589.
  • 30. Monteiro F.F., Gonçalves W.A., Andrade L. de M.B., Villavicencio L.M.M. and dos Santos Silva C.M. 2021. Assessment of Urban Heat Islands in Brazil based on MODIS remote sensing data, Urban Clim., 35, doi: 10.1016/j.uclim.2020.100726.
  • 31. Streutker D.R. 2002. A remote sensing study of the urban heat island of Houston, Texas, Int. J. Remote Sens., doi: 10.1080/01431160110115023.
  • 32. Mendez-Astudillo J., Lau L., Tang Y.T. and Moore T. 2021. A new Global Navigation Satellite System (GNSS) based method for urban heat island intensity monitoring, Int. J. Appl. Earth Obs. Geoinf., 94, doi: 10.1016/j.jag.2020.102222.
  • 33. Li H., Zhou Y., Jia G., Zhao K., Dong J. 2022. Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model. Geosci. Front., 13(1), doi: 10.1016/j.gsf.2021.101141.
  • 34. Despini F., Ferrari C., Santunione G., Tommasone S., Muscio A.,Teggi S. 2021. Urban surfaces analysis with remote sensing data for the evaluation of UHI mitigation scenarios, Urban Clim., 35, doi: 10.1016/j.uclim.2020.100761.
  • 35. Lucio P.S., de Toscano E.M.M., de Abreu M.L. 1999. Caracterização de séries climatológicas pontuais via análise canônica de correspondência. Estudo de caso: Belo Horizonte - MG (Brasil), Rev. Bras. Geofísica, 17(2–3), doi: 10.1590/ s0102-261x1999000200008.
  • 36. Passos R.G., Matiatos I., Monteiro L.R. Almeida R.S.S.P., Lopes N.P., Carvalho Filho C.A., Cota S.D.S. 2022. Imprints of anthropogenic air pollution sources on nitrate isotopes in precipitation in a tropical metropolitan area, Atmos. Environ., 288, 119300, doi: 10.1016/J.ATMOSENV.2022.119300.
  • 37. de Souza D.O. and dos Santos Alvalá R.C. 2014. Observational evidence of the urban heat island of Manaus City, Brazil, Meteorol. Appl., 21(2), doi: 10.1002/met.1340.
  • 38. de Oliveira A.P. and Fitzjarrald D.R. 1993. The Amazon river breeze and the local boundary layer: I. Observations, Boundary-Layer Meteorol., 63(1–2), doi: 10.1007/BF00705380.
  • 39. dos S. Gomes A. C. et al. 2021 Construção de cenários futuros da temperatura máxima do ar: Capitais do Nordeste Brasileiro, Rev. Bras. Geogr. Física, doi: 10.26848/rbgf.v14.4.p2427-2445.
  • 40. Wan Z. and Li Z.L.A. 1997. physics-based algorithm for retrieving land-surface emissivity and temperature from eos/modis data, IEEE Trans. Geosci. Remote Sens., 35(4), doi: 10.1109/36.602541.
  • 41. Schneider A., Friedl M.A., McIver D.K., Woodcock C.E. 2003. Mapping Urban Areas by Fusing Multiple Sources of Coarse Resolution Remotely Sensed Data, Photogrammetric Engineering and Remote Sensing, 69(12)., doi: 10.14358/PERS.69.12.1377.
  • 42. Suazo J.M.A., Rojas J.L.F., Karam H.A. 2020. Isla de Calor Urbana Superficial para Tres Megaciudades en África, Anuário do Inst. Geociências - UFRJ, doi: 10.11137/2020_2_64_75.
  • 43. Vijith H. and Dodge-Wan D. 2020. Applicability of MODIS land cover and Enhanced Vegetation Index (EVI) for the assessment of spatial and temporal changes in strength of vegetation in tropical rainforest region of Borneo, Remote Sens. Appl. Soc. Environ., 18, doi: 10.1016/j.rsase.2020.100311.
  • 44. Pan X., Wang Z., Gao Y., Dang X., Han Y. 2022. Detailed and automated classification of land use/ land cover using machine learning algorithms in Google Earth Engine, Geocarto Int., 37(18), doi: 10.1080/10106049.2021.1917005.
  • 45. Barat A., Parth Sarthi P., Kumar S., Kumar P., Sinha A.K. 2021. Surface Urban Heat Island (SUHI) Over Riverside Cities Along the Gangetic Plain of India, Pure Appl. Geophys., 178(4), doi: 10.1007/s00024-021-02701-6.
  • 46. Shi H., Xian G., Auch R., Gallo K., Zhou Q. 2021. Urban heat island and its regional impacts using remotely sensed thermal data—a review of recent developments and methodology, Land, 10(8), doi: 10.3390/land10080867.
  • 47. Chen S. Yang Y., Deng F., Zhang Y., Liu D., Liu C., Gaoet Z. 2022. A high-resolution monitoring approach of canopy urban heat island using a random forest model and multi-platform observations, Atmos. Meas. Tech., 15(3), doi: 10.5194/amt-15-735-2022.
  • 48. Lu L., Guo H., Weng Q., Bartesaghi-Koc C., Osmond P., Li Q. 2024. A transferable approach to assessing green infrastructure types (GITs) and their effects on surface urban heat islands with multisource geospatial data, Remote Sens. Environ., 306, doi: 10.1016/j.rse.2024.114119.
  • 49. Venkatraman S., Kandasamy V., Rajalakshmi J., Begum S., Sujatha M. 2024. Assessment of urban heat island using remote sensing and geospatial application: A case study in Sao Paulo city, Brazil, South America, J. South Am. Earth Sci., 134, doi: 10.1016/j.jsames.2023.104763.
  • 50. Fabrizi R., Bonafoni S., Biondi R. 2010. Satellite and ground-based sensors for the Urban Heat Island analysis in the city of Rome, Remote Sens., 2,(5), doi: 10.3390/rs2051400.
  • 51. Shandas V., Makido Y., Upraity A.N. 2023. Evaluating Differences between Ground-Based and Satellite-Derived Measurements of Urban Heat: The Role of Land Cover Classes in Portland, Oregon and Washington, D.C., Land, 12(3), doi: 10.3390/land12030562.
  • 52. Chongtaku T., Taparugssanagorn A., Miyazaki H.,Tsusaka T.W. 2024. Spatial-Multitemporal Analysis of Heatwaves in Thailand : Discrepancies between In-Situ Air Temperature and Remote Sensing-Derived Land Surface Temperature SpatialMultitemporal Analysis of Heatwaves in Thailand : Discrepancies between In-Situ Air Temperature and Remote Sensing-Derived Land, doi: 10.20944/preprints202402.1324.v1.
  • 53. Xia H., Chen Y., Song C., Li, J. Quan J., Zhou G. 2022. Analysis of surface urban heat islands based on local climate zones via spatiotemporally enhanced land surface temperature, Remote Sens. Environ., 273, doi: 10.1016/j.rse.2022.112972.
  • 54. Janjic Z.I. 1994. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes, Mon. Weather Rev., 122(5), doi: 10.1175/1520-0493(1994)122<0927:TSMECM>2 .0.CO;2.
  • 55. Lim K.S.S. and Hong S.Y. 2010. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models, Mon. Weather Rev., 138(5), doi: 10.1175/2009MWR2968.1.
  • 56. Iacono M.J., Delamere J.S., Mlawer E.J., Shephard M.W., Clough S.A., Collins W.D. 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res. Atmos., 113(13), doi: 10.1029/2008JD009944.
  • 57. Shen C., Chen X., Dai W., Li X., Wu J., Fan Q., Wang X., Zhu L., Chan P., Hang J., Fan S., Liet W. 2019. Impacts of high-resolution urban canopy parameters within the WRF model on dynamical and thermal f ields over Guangzhou, China, J. Appl. Meteorol. Climatol., 58(5), doi: 10.1175/JAMC-D-18-0114.1.
  • 58. Solano-Farias F., Ojeda M.G.V., Donaire-Montaño D., Rosa-Cánovas J.J., Castro-Díez Y. Esteban-Parra M.J., Gámiz-Fortis S.R. 2024. Assessment of physical schemes for WRF model in convection-permitting mode over southern Iberian Peninsula, Atmos. Res., 299, doi: 10.1016/j.atmosres.2023.107175.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21786e7a-c6c8-4631-950b-592458e3eb9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.