PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Long-term prediction of underground gas storage user gas flow nominations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many companies operating on the natural gas market use natural gas storage to balance production and transport capacities with major variations in gas demand. This paper presents an approach to predicting users’ gas flow nomination in underground gas storage by different users. A one-year prediction horizon is considered with weekly data resolution. Basic models show that whereas for the great majority of users we can predict nomination based only on weather data and technical parameters, for some users additional macro-economic data significantly improved prediction accuracy. Various modeling techniques such as linear regression, autoregressive exogenous model and Artificial Neural Network were used to develop prediction models. Results show that for most users an Artificial Neural Network provides optimal accuracy, indicating the non-linearity of the relationship between input and output variables. The models developed are intended to be used as support for facility operation decisions and gas storage product portfolio modifications.
Rocznik
Strony
272--280
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
  • Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
  • Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
Bibliografia
  • [1] O. Flanigan, Underground gas storage facilities: Design and implementation, Elsevier, 1995.
  • [2] G. Ding, C. Li, J. Wang, H. Xu, Y. Zheng, Q. Wanyan, Y. Zhao, The status quo and technical development direction of underground gas storages in china, Natural Gas Industry B 2 (6) (2015) 535–541.
  • [3] C. Budny, R. Madlener, C. Hilgers, Economic feasibility of pipe storage and underground reservoir storage options for power-to-gas load balancing, Energy Conversion and Management 102 (2015) 258–266.
  • [4] E. N. Escobar, G. R. Arteaga Mora, A. G. Kemp, et al., Underground natural gas storage in the uk: Business feasibility. case study, in: SPE EUROPEC/EAGE Annual Conference and Exhibition, Society of Petroleum Engineers, 2011.
  • [5] B. Žlender, S. Kravanja, Cost optimization of the underground gas storage, Engineering Structures 33 (9) (2011) 2554–2562.
  • [6] R. Danel, L. Otte, V. Vancura, M. Repka, Monitoring and balance of gas flow in underground gas storage, Procedia earth and planetary science 6 (2013) 485–491.
  • [7] K. Wojdan, B. Ruszczycki, D. Michalk, K. Swirski, Method for simulation and optimization of underground gas storage performance, Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles 69 (7) (2014) 1237–1249.
  • [8] A. S. Bagci, E. Ozturk, Performance prediction of underground gas storage in salt caverns, Energy Sources, Part B 2 (2) (2007) 155–165.
  • [9] T. Ligen, W. Jieming, D. Guosheng, S. Shasha, Z. Kai, S. Junchang, G. Kai, B. Fengjuan, Downhole inflow-performance forecast for underground gas storage based on gas reservoir development data, Petroleum Exploration and Development 43 (1) (2016) 138–142.
  • [10] H. Aras, N. Aras, Forecasting residential natural gas demand, Energy Sources 26 (5) (2004) 463–472.
  • [11] F. Gorucu, Artificial neural network modeling for forecasting gas consumption, Energy Sources 26 (3) (2004) 299–307.
  • [12] F. Gümrah, D. Katircioglu, Y. Aykan, S. Okumus, N. Kilincer, Modeling of gas demand using degree-day concept: case study for ankara, Energy sources 23 (2) (2001) 101–114.
  • [13] E. F. Sánchez-Úbeda, A. Berzosa, Modeling and forecasting industrial end-use natural gas consumption, Energy Economics 29 (4) (2007) 710–742.
  • [14] R. Gutiérrez, A. Nafidi, R. G. Sánchez, Forecasting total natural-gas consumption in spain by using the stochastic gompertz innovation diffusion model, Applied Energy 80 (2) (2005) 115–124.
  • [15] Z. Wadud, H. S. Dey, M. A. Kabir, S. I. Khan, Modeling and forecasting natural gas demand in bangladesh, Energy Policy 39 (11) (2011) 7372–7380.
  • [16] L.-M. Liu, M.-W. Lin, Forecasting residential consumption of natural gas using monthly and quarterly time series, International Journal of Forecasting 7 (1) (1991) 3–16.
  • [17] National Centers for Environmental Information (NCEI) formerly known as National Climatic Data Center (NCDC) | NCEI offers access to the most significant archives of oceanic, atmospheric, geophysical and coastal data., https://www.ncdc.noaa.gov/. URL https://www.ncdc.noaa.gov/
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2173b156-0a92-4ecd-bb96-09b5d194686d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.