PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical time-domain model for tool point dynamics in turning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analytical time domain solution is developed to model the dynamic response of a tool during a simple turning operation. The time domain solution developed in this paper relies on the superposition principal under the linear assumption to construct the time response of single mode, single degree of freedom cutting tool. The results from the analytical solution are compared with those generated using numerical time domain simulations and it is found that the two solutions converge as the time step used in the numerical simulation decreases.
Słowa kluczowe
Rocznik
Strony
75--94
Opis fizyczny
Bibliogr. 12 poz., tab., rys.
Twórcy
autor
  • UNCC, Faculty of Mechanical Engineering, Charlotte, NC, USA
autor
  • UNCC, Faculty of Mechanical Engineering, Charlotte, NC, USA
Bibliografia
  • [1] ALTINTAS Y., BUDAK E., 1995, Analytical prediction of stability lobes in milling, Annals of CIRP, 44/1.
  • [2] BAYLY P.V., HALLEY J.E., MANN B.P., DAVIES M.A., 2003, Stability of interupted cutting by temporal Finite Element Analysis, Journal of Manufacturing Science and Engineering, 125/2, 220–225.
  • [3] DAVIES M.A., PRATT J.R., DUTTERER B., BURNS T. J., 2002, Stability prediction for low radial immersion milling, Journal of Manufacturing Science and Engineering, 124, 217–225.
  • [4] INSPERGER T., STEPAN G., 2002, Semi-discretization method for delayed systems, International Journal for Numerical Methods in Engineering, 55/5, 503–518.
  • [5] INSPERGER T., STEPAN G., 2004, Updated semi-deiscretization method for periodic delay differential equations, International Journal for Numerical Methods in Engineering, 61, 117–141.
  • [6] MERDOL S.D., ALTINTAS Y., 2004, Multi frequency solution of chatter stability for low immersion milling, Journal of Manufacturing Science and Engineering, 126, 459–466.
  • [7] MYSHKIS A.D., 1998, Differential equations, ordinary with distributed arguments, Encyclopedia of Mathematics, Boston, Kluwer Academinc Publishers, 3, 144–147.
  • [8] OZOEGWU C.G., OMENYI S.N., 2012, Time domain chatter stability comparison of turning and milling processes, International Journal of Multidisciplinary Sciences and Engineering, 3/11, 25.
  • [9] SCHMITZ T.L., SMITH K.S., 2009, Machining dynamics - frequency response to improved productivity, New York, NY, Springer.
  • [10] SHAMPINE L.F., THOMPSON S., 2001, Solving DDEs in Matlab, Applied Numerical Mathematics, 37, 441–458.
  • [10] TLUSTY J., ISMAIL F., 1981, Basic non-linearities in maching chatter, Annals of CIRP, 30, 299-304.
  • [11] TLUSTY J., POLACEK W., 1963, The stability of machine tools against self excited vibrations, ASME International Research in Productoin Engineering, 1, 465–474.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2172b1aa-a9ea-446b-82d9-680116a548ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.