Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Due to the need for molnupiravir (EIDD-2801, MK-4482) anti-COVID-19 agent, in the present report, we have systematically investigated the effect of different solvents, acids (as catalyst), temperature, and other parameters which play rolls in De-ketalization process of its key intermediate. At the first glance, it might seem to be easy, but the complex nature of MK-4482 agent, and also the ultra-high purity of the crude (which is required for an active pharmaceutical ingredient (API)), make this process more complicated. As would be shown below, even a little change in the type of solvent, solvent ratio, the type or the amount of catalyst, and the temperature could directly change the reaction fate (it may lead to emergence of un-controlled impurity profile, or even it could block the reaction). However, in this work, we have been able to run this de-ketalization process only in water as the whole of the system. Here, it was observed that the high energy water molecules have been able to hydrolyze the ketal intermediate of MK-4482.
Wydawca
Czasopismo
Rocznik
Tom
Strony
202--216
Opis fizyczny
Bibliogr. 25 poz., rys., 1 wykr.
Twórcy
autor
- Department of Research & Development, Parsian Pharmaceutical Technology Company, Alborz, Iran
autor
- Department of Research & Development, Parsian Pharmaceutical Technology Company, Alborz, Iran
autor
- Department of Research & Development, Parsian Pharmaceutical Technology Company, Alborz, Iran
autor
- Department of Research & Development, Parsian Pharmaceutical Technology Company, Alborz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
autor
- Department of Research & Development, Parsian Pharmaceutical Technology Company, Alborz, Iran
autor
- Department of Research & Development, Parsian Pharmaceutical Technology Company, Alborz, Iran
autor
- Department of Research & Development, Parsian Pharmaceutical Technology Company, Alborz, Iran
Bibliografia
- [1] Ndaïrou, F.; Area, I.; Nieto, J.J.; Torres, D.F.M.; Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos. Solit. Fract. 2020, 135, 109846. DOI: 10.1016/j.chaos.2020.109846
- [2] Zhang, J.; Wang, X.; Jia, X.; Li, J.; Hu, K.; Chen, G.; Wei, J.; Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin. Microbial. infect. 2020, 26, 767-772. DOI: 10.1016/j.cmi.2020.04.012
- [3] Yuki, K.; Fujiogi, M.; Koutsogiannaki, S.; COVID-19 pathophysiology: A review Clin. immunol. 2020, 215, 108427. DOI: 10.1016/j.clim.2020.108427
- [4] a) Ciotti, M.; Angeletti, S.; Minieri, M.; Giovannetti, M.; Benvenuto, D.; Pascarella, S.; Sagnelli, C.; Bianchi, M.; Bernardini, S.; Ciccozzi, M.; COVID-19 outbreak: an overview. Chemotherapy 2019, 64, 215-223; DOI: 10.1159/000507423 b) Siadati, S.A.; Afzali, M.; Sayyadi, M.; Could silver nano-particles control the 2019-nCoV virus?; An urgent glance to the past. Chem. Rev. Lett. 2020, 3, 9-11; DOI: 10.22034/CRL.2020.224649.1044 c) Siadati, S.A.; Rezvanfar, M.A.; Babanezhad, E.; Beheshti, A.; Payab, M.; Harmony of operations of some vitamins in controlling the 2019-nCoV virus based on scientific reports. Chem. Rev. Lett. 2020, 3, 202-206. DOI: 10.22034/CRL.2020.250866.1082
- [5] Singh, A.; Sehgal, R.; Kumari, N.; Kaur, K.; Molnupiravir and Favipiravir in the therapeutics of SARS-CoV-2-A review: Molnupiravir and Favipiravir in SARS-CoV-2. Indian J. Pharm. Educ. Res. 2022, 91-97.
- [6] a) Singh, A.K.; Singh, A.; Singh, R.; Misra, A.; Molnupiravir in COVID-19: a systematic review of literature. Clin. Res. Rev. 2021, 15, 102329; DOI: 10.1016/j.dsx.2021.102329 b) Malone, B.; Campbell, E.A.; Molnupiravir: Coding for catastrophe. Nature Struct. Mol. Biol. 2021, 28, 706-708. DOI: 10.1038/s41594-021-0 0657-8
- [7] Kocienski, P.; Concise Synthesis of Molnupiravir. Synfacts 2021, 17, 1190. DOI: 10.1055/s-0040-1720911
- [8] Dey, R.; Nayak, S.; Das, P.; Yadav, S.; Dey, R.; Nayak, S.; Das, P.; Yadav, S.; Short Synthesis of Molnupiravir (EIDD-2801) via a Thionated Uridine Intermediate. ACS omega 2021, 6, 28366-28372. DOI: 10.1021/acsomega.1c04550
- [9] Ahmed, A.; Ahmed, Q.N.; Mukherjee, D.; Conversion of N-acyl amidines to amidoximes: a convenient synthetic approach to molnupiravir (EIDD-2801) from ribose. RSC Adv. 2021, 11, 36143-36147. DOI: 10.1039/D1RA06912H
- [10] Kocienski, P.; Synthesis of Molnupiravir from Uridine. Synfacts 2021, 17, 0236. DOI: 10.1055/s-0040-1719318
- [11] a) Dadras, A.; Rezvanfar, M.A.; Beheshti, A.; Naeimi, S.S.; Siadati, A.; An Urgent Industrial Scheme both for Total Synthesis, and for Pharmaceutical Analytical Analysis of Umifenovir as an Anti-Viral API for Treatment of COVID-19. Comb. Chem. High Throughput Screen. 2022, 25, 838-846; DOI: 10.2174/1386207324666210203175631 b) Siadati, S.A.; Davoudi, S.; Soheilizad, M.; Firoozpour, L.; Payab, M.; Bagherpour, S.; Kolivand, S.; The synthesis and the mechanism of a five-membered ring formation between an isothiocyanate and an amide leading to the yield of Enzalutamide anticancer API; a joint experimental and theoretical study. J. Mol. Struct. 2023, 135057; DOI: 10.1016/j.molstruc.2023.135057 c) Siadati, S.A.; Soheilizad, M.; Firoozpour, L.; Samadi, M.; Payab, M.; Bagherpour, S.; Mousavi, S.M.; An Industrial Approach to Production of Tofacitinib Citrate (TFC) as an Anti-COVID-19 Agent: A Joint Experimental and Theoretical Study. J. Chem. 2022, 2022, 8759235. DOI: 10.1155/2022/8759235
- [12] a) Shiri, P.; Ramezanpour, S.; Amani, A.M.; Dehaen, W.; A patent review on efficient strategies for the total synthesis of pazopanib, regorafenib and lenvatinib as novel anti-angiogenesis receptor tyrosine kinase inhibitors for cancer therapy. Mol. Divers. 2022, 26, 2981-3002; DOI: 10.1007/s11030-022-10406-8 b) Sharghi, H.; Aboonajmi, J.; Aberi, M.; Shiri, P.; Heterogeneous AlPO4(SO3H) nanosheets: novel catalyst for the multi-component synthesis of quinazolinones and highly functionalized piperidines. J. Iran Chem. Soc. 2018, 15, 1107-1118; DOI: 10.1007/s13738-018-1308-0 c) Rostamian, R.; Khalilzadeh, M.A.; Zareyee, D.; Wood ash biocatalyst as a novel green catalyst and its application for the synthesis of benzochromene derivatives. Sci. Rep. 2022, 12, 1145. DOI: 10.1038/s41598-022-05133-x
- [13] a) Yaghoobi, M.; Zareyee, D.; Khalilzadeh, M.A.; Strecker synthesis of α-aminonitriles using Au nanoparticles capped with porous SiO2 shell (Au@ pSiO2) as a highly efficient and recyclable nanostructured catalyst. Inorg. Nano-Met. Chem. 2022, 1-8; DOI: 10.1080/24701556.2022.2081194 b) Nasiri, A.; Khalilzadeh, M.A.; Zareyee, D.; Biosynthesis and characterization of magnetic starch-silver nanocomposite: catalytic activity in eco-friendly media. J. Coord. Chem. 2022, 75, 256-279; DOI: 10.1080/00958972.2022.2038369 c) Rostami-Charati, F.; Hossaini, Z.; Sheikholeslami-Farahani, F.; Azizi, Z.; Siadati, S.A.; Synthesis of 9H-furo [2, 3-f] Chromene Derivatives by Promoting ZnO Nanoparticles. Comb. Chem. High Throughput Screen. 2015, 18, 872-880.
- [14] a) Balou, J.; Khalilzadeh, M.A.; Zareyee, D.; An efficient and reusable nano catalyst for the synthesis of benzoxanthene and chromene derivatives. Sci. Rep. 2019, 9, 3605; DOI: 10.1038/s41598-019-40431-x b) Siadati, S.A.; Beyond the alternatives that switch the mechanism of the 1,3-dipolar cycloadditions from concerted to stepwise or vice versa: a literature review. Prog. React. Kinet. Mech. 2016, 41, 331-344; DOI: 10.3184/146867816X14719552202168 c) Siadati, S.A.; Rezazadeh, S.; The extraordinary gravity of three atom 4π-components and 1, 3-dienes to C20-nXn fullerenes; a new gate to the future of Nano technology. Sci. Rad. 2022, 1, 46-68. DOI: 10.58332/v22i1a04
- [15] a) Siadati, S.A.; An example of a stepwise mechanism for the catalyst-free 1,3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene. Tetrahedron let. 2015, 56, 4857-4863; DOI: 10.1016/j.tetlet.2015.06.048 b) Siadati, A.; A theoretical study on the possibility of functionalization of C20 fullerene via its Diels-Alder reaction with 1, 3-butadiene. Lett. Org. Chem. 2016, 13, 2-6; c) Siadati, S.A.; Effect of steric congestion on the stepwise character and synchronicity of a 1,3-dipolar reaction of a nitrile ylide and an olefin. J. Chem. Res. 2015, 39, 640-644. DOI: 10.3184/174751915X14448371200600
- [16] Hossaini, Z.; Rostami-Charati, F.; Ghambarian, M.; Siadati, S.A.; Synthesis of a new class of phosphonate derivatives using a three component reaction of trialkyl phosphites or triaryl phosphites in water. Phosphorus, Sulfur, Silicon Relat. Elem. 2015, 190, 1177-1182. DOI: 10.1080/10426507.2014.978329
- [17] Ahlqvist, G.P.; McGeough, C.P.; Senanayake, C.; Armstrong, J.D.; Yadaw, A.; Roy, S.; Jamison, T.F.; Progress Toward a Large-Scale Synthesis of Molnupiravir (MK-4482, EIDD-2801) from Cytidine. ACS omega 2021, 610396-402. DOI: 10.1021/acsomega.1c00772
- [18] Vasudevan, N.; Ahlqvist, G.P.; McGeough, C.P.; Paymode, D.J.; Cardoso, F.S.; Lucas, T.; Snead, D.R.; A concise route to MK-4482 (EIDD-2801) from cytidine. Chem. Commun. 2020, 56, 13363-4.
- [19] Jian, C.; Changquan, Y.; Chen, C.; Preparation method of 4-oximide-5'-(2-methylpropionyl) uridine. 2021, CN112552288A.
- [20] Gopalsamuthiram, V.; Kadam, A.L.; Noble, J.; Snead, D.; Williams, C.; Jamison, T.F.; Senanayake, C.; Towards a practical, non-enzymatic process for molnupiravir from cytidine. ChemRxiv 2021. DOI: 10.26434/chemrxiv.14738109.v1
- [21] Paymode, D.J.; Vasudevan, N.; Ahmad, S.; Kadam, A.L.; Cardoso, F.S.; Burns, J.M.; Cook, D.W.; Stringham, R.W.; Snead, D.R.; Toward a Practical, Two-Step Process for Molnupiravir: Direct Hydroxami nation of Cytidine Followed by Selective Esterification. Org. Process Res. Dev. 2021, 25, 1822-1830. DOI: 10.1021/acs.oprd.1c00033
- [22] Gopalsamuthiram, V.; Williams, C.; Noble, J.; Jamison, T.F.; Gupton, B.F.; Snead, D.R.; A Concise Route to MK-4482 (EIDD-2801) from Cytidine: Part 2. Synlett 2021, 32, 326-328. DOI: 10.1055/a-1275-2848 [23] Xuchun, Z.; Yiping, Z.; Chenchen, F.; Preparation method of antiviral drug Molnupiravir. 2021, CN112608357.
- [24] a) Siadati, S.A.; Rezvanfar, M.A., Payab, M.; Beheshti, A.; Development and validation of a short runtime method for separation of trace amounts of 4-aminophenol, phenol, 3-nitrosalicylic acid and mesalamine by using HPLC system. Curr. Chem. Lett. 2021, 10, 151-160; DOI: 10.5267/j.ccl.2020.12.002 b) Siadati, S.A.; Payab, M.; Beheshti, A.; Development of a reversed-phase HPLC method for determination of related impurities of Lenalidomide. Chem. Rev. Lett. 2020, 3, 61-64.
- [25] a) Beheshti, A.; Kamalzadeh, Z.; Haj-Malek, M.; Payab, M.; Rezvanfar, M.A.; Siadati, S.A.; Development and validation of a reversed-phase HPLC method for determination of assay content of Teriflunomide by the aid of BOMD simulations. Curr. Chem. Lett. 2021, 10, 281-294; DOI: 10.5267/j.ccl.2021.3.001 b) Beheshti, A.; Payab, M.; Seyyed-Ali-Karbasi, V.; Siadati, S.A.; An unexpected aerobic oxidation of α-amino boronic acid part of Borteomib, leading to (thermal) decomposition of this very expensive anti-cancer API. Curr. Chem. Let. 2022, 11, 227-236. DOI: 10.5267/j.ccl.2021.12.001
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-216d92d1-df8c-4fb3-bb9d-d9259b4fca4a