Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper the new paradigm for structural optimization without volume constraint is presented. Since the problem of stiffest design (compliance minimization) has no solution without additional assumptions, usually the volume of the material in the design domain is limited. The biomimetic approach, based on trabecular bone remodeling phenomenon is used to eliminate the volume constraint from the topology optimization procedure. Instead of the volume constraint, the Lagrange multiplier is assumed to have a constant value during the whole optimization procedure. Well known MATLAB topology based optimization code, developed by Ole Sigmund, was used as a tool for the new approach testing. The code was modified and the comparison of the original and the modified optimization algorithm is also presented. With the use of the new optimization paradigm, it is possible to minimize the compliance by obtaining different topologies for different materials. It is also possible to obtain different topologies for different load magnitudes. Both features of the presented approach are crucial for the design of lightweight structures, allowing the actual weight of the structure to be minimized. The final volume is not assumed at the beginning of the optimization process (no material volume constraint), but depends on the material’s properties and the forces acting upon the structure. The cantilever beam example, the classical problem in topology optimization is used to illustrate the presented approach.
Rocznik
Tom
Strony
art. no. e137732
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- Poznan University of Technology, Division of Virtual Engineering, ul. Jana Pawła II 24, 60-965 Poznań, Poland
autor
- Poznan University of Technology, Division of Virtual Engineering, ul. Jana Pawła II 24, 60-965 Poznań, Poland
Bibliografia
- [1] W. Wang et al., “Space-time topology optimization for additive manufacturing”, Struct. Multidiscip. Optim., vol. 61, no. 1, pp. 1‒18, 2020, doi: 10.1007/s00158-019-02420-6.
- [2] Y. Saadlaoui, et al., “Topology optimization and additive manufacturing: Comparison of conception methods using industrial codes”, J. Manuf. Syst., vol. 43, pp. 178‒286, 2017, doi: 10.1016/j.jmsy.2017.03.006.
- [3] J. Zhu, et al., “A review of topology optimization for additive manufacturing: Status and challenges”, Chin. J. Aeronaut., vol. 34, no. 1, pp. 9‒110, 2021, doi: 10.1016/j.cja.2020.09.020.
- [4] O. Sigmund, “A 99 line topology optimization code written in Matlab”, Struct. Multidiscip. Optim., vol. 21, no. 2, pp. 120‒127, 2001, doi: 10.1007/s001580050176.
- [5] M. Bendsoe and O. Sigmund, Topology optimization. Theory, methods and applications, Berlin Heidelberg New York, Springer, 2003, doi: 10.1007/978-3-662-05086-6.
- [6] M. Bendsoe and N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method”, Comput. Methods Appl. Mech. Eng., vol. 71, pp. 197‒224, 1988.
- [7] O. Sigmund and K. Maute, “Topology optimization approaches”, Struct. Multidiscip. Optim., vol. 48, pp. 1031‒1055, 2013, doi: 10.1007/s00158‒013‒0978‒6.
- [8] Z. Ming and R. Fleury, “Fail-safe topology optimization”, Struct. Multidiscip. Optim., vol. 54, no. 5, pp. 1225‒1243, 2016, doi: 10.1007/s00158-016-1507-1.
- [9] L. Krog et al., “Topology optimization of aircraft wing box ribs”, AIAA Paper, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New York, 2004, doi: 10.2514/6.2004-4481.
- [10] Z. Luo et al., “A new procedure for aerodynamic missile designs using topological optimization approach of continuum structures”, Aerosp. Sci. Technol., vol. 10, pp. 364‒373, 2006, doi: 10.1016/j.ast.2005.12.006.
- [11] M. Zhou et al., “Industrial application of topology optimization for combined conductive and convective heat transfer problems”, Struct. Multidiscip. Optim., vol. 54, no 4, pp. 1045‒1060, 2016, doi: 10.1007/s00158-016-1433-2.
- [12] G. Allaire et al., “The homogenization method for topology optimization of structures: old and new”, Interdiscip. Inf. Sci., vol.25/2, pp. 75‒146, 2019, doi: 10.4036/iis.2019.B.01.
- [13] G. Allaire and R.V. Kohn, “Topology Optimization and Optimal Shape Design Using Homogenization”, Topology Design of Structures. NATO ASI Series – Series E: Applied Sciences, M. Bendsoe, C. Soares – eds., vol. 227, pp. 207‒218, 1993, doi: 10.1007/978-94-011-1804-0_14.
- [14] G. Allaire et al., ”Shape optimization by the homogenization method”, Numer. Math., vol. 76, no. 1, pp. 27‒68, 1997, doi: 10.1007/s002110050253.
- [15] G. Allaire, Shape Optimization by the Homogenization Method, Springer, 2002, doi: 10.1007/978-1-4684-9286-6.
- [16] J. Wolff, “The Classic: On the Inner Architecture of Bones and its Importance for Bone Growth”, Clin. Orthop. Rel. Res., vol. 468, no. 4, pp. 1056‒1065, 2010, doi: 10.1007/s11999-010-1239-2.
- [17] H. M. Frost, The Laws of Bone Structure, C.C. Thomas, Springfield, 1964.
- [18] R. Huiskes et al., ”Adaptive bone-remodeling theory applied to prosthetic-design analysis”, J. Biomech., vol. 20, pp. 1135‒1150, 1987.
- [19] R. Huiskes, “If bone is the answer, then what is the question?”, J. Anat., vol. 197, no. 2, pp. 145‒156, 2000.
- [20] D.R. Carter, “Mechanical loading histories and cortical bone remodeling”, Calcif. Tissue Int., vol. 36, no. Suppl. 1, pp. 19‒24, 1984, doi: 10.1007/BF02406129.
- [21] R.F.M. van Oers, R. Ruimerman, E. Tanck, P.A.J. Hilbers, R. Huiskes, “A unified theory for osteonal and hemi-osteonal remodeling”, Bone, vol. 42, no. 2, pp. 250‒259, 2008, doi: 10.1016/j.bone.2007.10.009.
- [22] M. Nowak, J. Sokołowski, and A. Żochowski, “Justification of a certain algorithm for shape optimization in 3D elasticity”, Struct. Multidiscip. Optim., vol. 57, no. 2, pp. 721‒734, 2018, doi: 10.1007/s00158-017-1780-7.
- [23] M. Nowak, J. Sokołowski, and A. Żochowski, “Biomimetic approach to compliance optimization and multiple load cases”, J. Optim. Theory Appl., vol. 184, no. 1, pp. 210‒225, 2020, doi: 10.1007/s10957-019-01502-1.
- [24] J. Sokołowski and J-P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer-Verlag, 1992, doi: 10.1007/978-3-642-58106-9.
- [25] D. Gaweł et al., “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 5, pp. 741‒750, 2017, doi: 10.1515/bpasts-2017-0080.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21672e58-699b-4dbb-9883-407e8ec0991b