PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation on flexural performance of UHPC beams reinforced with steel-FRP bars

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To investigate the flexural performance of Steel-FRP Composite Bars (SFCBs) reinforced Ultra-High Performance Concrete (UHPC) beams, eight concrete beams with different reinforcement ratio, types of concrete were designed and fabricated. Flexural performance tests were conducted to examine the effect of various parameters on bearing capacity, deflections, crack patterns, ductility, and failure modes. The results indicate a significant enhancement in the flexural capacity of tested beams with UHPC. The bearing capacity of SFCB-UHPC beam is higher than that of steel-reinforced UHPC beams, but less than that of FRP (Fiber-Reinforced Polymer) reinforced UHPC beams. The deformation and crack resistance ability of SFCB-UHPC beams fall between those of steel-reinforced UHPC beam and BFRP-reinforced UHPC beam. Increasing the concrete strength and SFCB reinforcement ratio can significantly enhance the deformation and crack resistance ability of SFCB-UHPC beam. All tested specimens exhibited ductile failure. At the serviceability limit state controlled by deflection/crack, the steel-reinforced UHPC beams and BFRP-reinforced UHPC beams exhibit the highest and lowest utilization factors of flexural capacity, respectively, and that of SFCB-UHPC beams falling in between. High-ductility UHPC enhances energy absorption, ductility, initial and secant stiffness. The reinforcement type has a minor impact on the energy dissipation of flexural beams. SFCB, on the other hand, enhances the ductility, initial and secant stiffness of specimens. Based on a simplified material constitutive model and fundamental assumptions, three failure modes for the SFCB-UHPC beam under bending were defined, along with their respective criteria. This enables the establishment of a simplified load capacity calculation formula. With reference to ACI440.1R-03, a stiffness calculation formula was developed to predict the deformation of SFCB-UHPC beams. This research can provide a technological reference for the design and analysis of SFCB-reinforced UHPC beams.
Rocznik
Strony
art. no. e132, 2024
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
  • College of Civil Science and Engineering, Yangzhou University, Huayang Xilu 198, Yangzhou 225127, Jiangsu, China
  • Institute of Engineering Structure and Disaster Prevention and Mitigation, Yangzhou University, Yangzhou 225127, China
autor
  • College of Civil Science and Engineering, Yangzhou University, Huayang Xilu 198, Yangzhou 225127, Jiangsu, China
  • College of Civil Science and Engineering, Yangzhou University, Huayang Xilu 198, Yangzhou 225127, Jiangsu, China
  • Faculty of Engineering and Informatics, University of Bradford, Bradford BD71DP, UK
autor
  • Yangzhou Jianwei Construction Engineering Testing Center Co., Ltd, Yangzhou 225009, China
autor
  • Nantong Construction Quality and Supervision Station, Nantong 226000, China
autor
  • College of Civil Science and Engineering, Yangzhou University, Huayang Xilu 198, Yangzhou 225127, Jiangsu, China
  • Institute of Engineering Structure and Disaster Prevention and Mitigation, Yangzhou University, Yangzhou 225127, China
autor
  • College of Civil Science and Engineering, Yangzhou University, Huayang Xilu 198, Yangzhou 225127, Jiangsu, China
  • Institute of Engineering Structure and Disaster Prevention and Mitigation, Yangzhou University, Yangzhou 225127, China
Bibliografia
  • 1. Sijavandi K, Sharbatdar MK, Kheyroddin A. Experimental evaluation of flexural behavior of high-performance fiber reinforced concrete beams using GFRP and high strength steel bars. Structures. 2021;33:4256-68.
  • 2. Aydın E, Boru E, Aydın F. Effects of FRP bar type and fiber reinforced concrete on the flexural behavior of hybrid beams. Constr Build Mater. 2021;279:122407.
  • 3. Pour AK. Experimental and numerical evaluation of steel fibres RC patterns influence on the seismic behaviour of the exterior concrete beam-column connections. Eng Struct. 2022;263:114358.
  • 4. Zhang W, Liu X, Huang Y, Tong M. Reliability-based analysis of the flexural strength of concrete beams reinforced with hybrid BFRP and steel rebars. Archiv Civ Mech Eng. 2022;171:22.
  • 5. Soliman NA, Tagnit-Hamou A. Using glass sand as an alternative for quartz sand in UHPC. Constr Build Mater. 2017;145:243-52.
  • 6. Chang W, Zheng W, Hao M. Compression behavior of ultra-high performance concrete (UHPC) confined with high-strength recti-linear ties. Archiv Civ Mech Eng. 2022;27:22.
  • 7. Chen Z, Wang X, Ding L, Jiang K, Su C, Liu J, Wu Z. Mechanical properties of a novel UHPC reinforced with macro basalt fibers. Constr Build Mater. 2023;377:131107.
  • 8. Du S, Luan C, Yuan L, Du P, Zhou Z, Wang J. Investigation on the effect of silane coupling agent treatment of steel fibers on the durability of UHPC. Archiv Civ Mech Eng. 2023;118:23.
  • 9. Mirdan D, Saleh AR. Flexural performance of reinforced concrete (RC) beam strengthened by UHPC layer. Case Stud Constr Mat. 2022;17:e01655.
  • 10. Shao Y, Ostertag CP. Bond-slip behavior of steel reinforced UHPC under flexure: experiment and prediction. Cement Concrete Comp. 2022;133:104724.
  • 11. Cao X, Ren Y, Qian K, Fu F, Deng X, Zhang W. Size effect on flexural behavior of ultra-high-performance concrete beams with different reinforcement. Structures. 2022;41:969-81.
  • 12. Ge W, Zhang Z, Ashour A, Guan Z, Jiang H, Sun C, Qiu L, Yao S, Cao D. Flexural performance of prefabricated U-shaped UHPC permanent formwork-concrete composite beams reinforced with FRP bars. Archiv Civ Mech Eng. 2023;108:23.
  • 13. Wang Y, Wang G, Guan Z, Ashour A, Ge W, Zhang P, Lu W, Cao D. The effect of freeze-thaw cycles on flexural behaviour of FRP-reinforced ECC beams. Archiv Civ Mech Eng. 2021;101:21.
  • 14. Cao X, Ren Y, Zhang L, Jin L, Qian K. Flexural behavior of ultrahigh-performance concrete beams with various types of rebar. Compos Struct. 2022;292:115674.
  • 15. Kadhim MMA, Jawdhari A, Nadir W, Cunningham LS. Behaviour of RC beams strengthened in flexure with hybrid CFRP-reinforced UHPC overlays. Eng Struct. 2022;262:114356.
  • 16. Liu S, Wang X, Ali YMS, Su C, Wu Z. Flexural behavior and design of under-reinforced concrete beams with BFRP and steel bars. Eng Struct. 2022;263:114386.
  • 17. Lu X, Zhu Z, Mohibullah M, Wang K. Nonlinear analysis of flexural performance of reactive powder concrete beams reinforced with hybrid GFRP and steel bars. Case Stud Constr Mat. 2022;17:e01450.
  • 18. Ge W, Wang Y, Ashour A, Lu W, Cao D. Flexural performance of concrete beams reinforced with steel-FRP composite bars. Archiv Civ Mech Eng. 2020;20:56.
  • 19. Abbas EMA, Ge Y, Zhang Z, Chen Y, Ashour A, Ge W, Tang R, Yang Z, Khailah EY, Yao S, Sun C. Flexural behavior of UHPC beam reinforced with steel-FRP composite bars. Case Stud Constr Mat. 2022;16:e01110.
  • 20. Sun Z, Zheng Y, Sun Y, Shao X, Wu G. Deformation ability of precast concrete columns reinforced with steel-FRP composite bars (SFCBs) based on the DIC method. J Build Eng. 2023;68: 106083.
  • 21. Xiao S, Lin J, Li L, Guo Y, Zeng J, Xie Z, Wei F, Li M. Experimental study on flexural behavior of concrete beam reinforced with GFRP and steel-fiber composite bars. J Build Eng. 2021;43:103087.
  • 22. GeW ZZ, Ashour A, Jiang H, Liu Y, Li S, Cao D. Investigation on flexural behavior of steel-UHPC composite beams with steel shear keys. J Constr Steel Res. 2023;211:108158.
  • 23. GB/T 31387-2015. Reactive powder concrete. Beijing; 2015.
  • 24. GB 50010-2010. Code for design of concrete structures. Beijing; 2010.
  • 25. Lu X, Wang Y, Fu C, Zheng W. Basic mechanical property indexes of reactive powder concrete. J Harbin Inst Technol. 2014;46:1-9 (in Chinese).
  • 26. GB/T 228.1-2021. Metallic materials: tensile testing: part 1: method oftest at room temperature. Beijing; 2021.
  • 27. ACI 440.3R-04. Guide Test methods for fiber-reinforced polymers (FRPs) for reinforcing or strengthening concrete structures. Detroit: American Concrete Institute; 2004.
  • 28. ASTM D7205/D7205M-06. Standard test method for tensile properties of fiber reinforced polymer matrix composite bars. West Conshohocken, PA: ASTM International; 2016.
  • 29. ACI 440.1R-06. Guide for the design and construction of concrete reinforced with FRP bars. Detroit: American Concrete Institute; 2006.
  • 30. Ge W. Study on flexural compression and seismic behavior of high-strength reinforced concrete structural members with fine grains. Nanjing: Southeast University; 2012. (in Chinese).
  • 31. Zeng D, Cao M. The flexural behaviors and mechanism of wollastonite microfiber modified ultra-high performance concrete with steel fiber from micro to macro scale. Archiv Civ Mech Eng. 2022;32:22.
  • 32. Wan C, Li C, Zhu H, Zheng Y, Cheng S. Serviceability evaluation model of SFRC beams reinforced with FRP bars based on deformation control. Structures. 2023;56:104807.
  • 33. Han S, Zhou A, Ou J. Relationships between interfacial behavior and flexural performance of hybrid steel-FRP composite bars reinforced seawater sea-sand concrete beams. Compos Struct. 2021;227:114672.
  • 34. Yu R, Liu K, Yin T, Tang L, Ding M, Shui Z. Comparative study on the effect of steel and polyoxymethylene fibers on the characteristics of ultra-high performance concrete (UHPC). Cement Concrete Comp. 2022;127:104418.
  • 35. Sun Y, Fu J, Sun Z, Zhang J, Wei Y, Wu G. Flexural behavior of concrete beams reinforced by partially unbonded steel-FRP composite bars. Eng Struct. 2022;272:115050.
  • 36. Han S, Fan C, Zhou A, Ou J. Simplified implementation of equivalent and ductile performance for steel-FRP composite bars reinforced seawater sea-sand concrete beams: equal-stiffness design method. Eng Struct. 2022;266:114590.
  • 37. ACI 440.1R-15. Guide for the design and structural of concrete reinforced with Fiber-reinforced polymer (FRP) bars. Detroit: American Concrete Institute; 2015.
  • 38. Saad AG, Sakr MA, El-korany TM. The shear strength of existing non-seismic RC beam-column joints strengthened with CFRP sheets: numerical and analytical study. Eng Struct. 2023;291:116497.
  • 39. Saad AG, Sakr MA, Khalifa TM, Darwish EA. Numerical analysis of rubberized engineered cementitious composite (RECC) RC beams under impact loads. Constr Build Mater. 2023;409:134162.
  • 40. Zheng W, Li H, Wang Y. Compressive stress-strain relationship of steel fiber-reinforced reactive powder concrete after exposure to elevated temperatures. Constr Build Mater. 2012;35:931-40.
  • 41. ACI 440.1R-03. Guide for the design and construction of concrete reinforced with FRP bars. Detroit: American Concrete Institute;2004.
  • 42. Ge W, Song W, Ashour A, Lu W, Cao D. Flexural performance of FRP/steel hybrid reinforced engineered cementitious composite beams. J Build Eng. 2020;31:101329.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-216638c8-0549-4d53-863d-84d259c64b09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.