PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of a metal clad waveguide sensor having metamaterial as a guiding layer

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study a metal clad waveguide sensor with a metamaterial guiding layer is analyzed. Sensitivity of the proposed sensor is derived using dispersion and Fresenal’s equations for waveguiding mode and reflection mode. While efficiently analyzing and comparing the results with the existing one, some interesting findings are achieved. It is observed that the proposed sensor shows larger cover layer sensitivity and larger adlayer sensitivity compared to the dielectric guiding layer sensor due to adsorbtive properties of metamaterial. Henceforth, it concludes that the proposed sensor shows sensitivity improvement over a dielectric guiding layer sensor.
Twórcy
autor
  • Department of Electronics and Communication Engineering, MNNIT, Allahabad (U.P.), India
  • Department of Electronics and Communication Engineering, MNNIT, Allahabad (U.P.), India
autor
  • Department of Electronics and Communication Engineering, MNNIT, Allahabad (U.P.), India
autor
  • Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi (U.P.), India
autor
  • Department of Electronics and Communication Engineering, B.I.E.T Jhansi, (U.P.), India
Bibliografia
  • 1. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated optical chemical sensors”, J. Opt. Soc. Am. B 6, 209–220 (1989).
  • 2. J. Voros, J.J. Ramsden, G. Csucs, I. Szendro, S.M. dePaul, M. Textor, and N.D. Spencer, “Optical grating coupler biosensors”, Biomaterials 23, 3699–3710 (2002).
  • 3. R.E. Kunz, “Miniature integrated optical modules for chemical and biological sensing”, Sens. Actuators B 38, 13–28 (1997).
  • 4. W. Lukosz, “Integrated optical chemical and direct biochemical sensors”, Sens. Actuators B 29, 3750 (1995).
  • 5. Robert Horvath, H.C. Pedersen, and N. Skivesen, “Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing”, Appl. Phys. Lett. 86, 071101–3 (2005).
  • 6. R. Horvath, L.R. Lindvold, and N.B. Larsen, “Reverse symmetry waveguides: theory and fabrication”, Appl. Phys. B. 74, 383–393 (2002).
  • 7. Z. Salamon, S. Cowell, E. Varga, H.I. Yamamura, V.J. Hurby, and G. Tollin, “Plasmon resonance studies of agonist/antagonist binding to the human delta-opioid receptor: New structural insights into receptor-legand interactions”, Biophys. J. 79, 2463–2474 (2000).
  • 8. R. Horvath, H.C. Pederson, N. Skivensen, D. Selmeczi, and N.B. Larsen, “Reverse symmetry waveguides: theory and fabrication”, Appl. Phys. B. Lett. 86, 383–393 (2005).
  • 9. N. Skivensen, R. Horvath, and H.C. Pedersen, “Optimization of metal clad waveguide sensors”, Sens. Actuators B 106, 668–676 (2005).
  • 10. V. Veselago, “The electrodynamics of substance with simultaneously negative values of ε and μ”, Sov. Phys. Usp. 10, 509–514 (1968).
  • 11. J.B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966–3969 (2000).
  • 12. R.A. Shelby, D.R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction”, Science 292, 77–79 (2001).
  • 13. D.K. Qing and G. Chen, “Enhancement of evanescent wave in a waveguide using metamaterials of negative Permittivity and permeability”, Appl. Phys. Lett. 84, 669–671 (2004).
  • 14. M. Hujng and J.J. Yang, “Microwave sensor using metamaterial”, A. Petrin Ed., Intech Inc Klagenfurt, pp. 13–36, 2011.
  • 15. K.Y. Yang, V. Giannini, A.O. Bak, H. Amrania, S.A. Maier, and C.C. Phillips, “Subwavelength imaging with quantum metamaterials”, Phys. Rev. B 86, 075309 (2012).
  • 16. Y. Prajapati, A. Yadav, A. Verma, V. Singh, and J.P. Saini, “Effect of Metamaterial layer on optical surface plasmon resonance sensor”, Int. J. Light Electron Opt. 124, 3607–3610 (2013).
  • 17. S.A. Taya and H.M. Kullab, “Optimization of transverse elecric peak type metal clad waveguide sensor using double-nega-tive materials”, Appl. Phys. A 116, 1841–1846 (2014).
  • 18. D. Sharma, A. Verma, Y.K. Prajapati, V. Singh, and J.P. Saini, “Forward and backward wave propagation in multilayer planar waveguide using metamaterials layer”, Opt. Quant. Electron 45, 105–114 (2013).
  • 19. J.B. Maurya, Y.K. Prajapati, V. Singh, and J.P. Saini, “Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2-SiO2 composite layer”, Appl. Phys. A-Materials Science & Processing 121, 525–533, DOI 10.1007/s00339-015-9442-3, (2015).
  • 20. J.B. Maurya, Y.K. Prajapati, V. Singh, J.P. Saini, and R. Tripathi, “Performance of graphene-MoS2 based surface plasmon resonance sensor using silicon layer,” J. Opt. and Quant. Electron. 47, 3599–3611 (2015).
  • 21. R. Kashyap and G. Nemova, “Surface plasmon resonance-based fiber and planarwaveguide sensors”, J. Sens. DOI: 10.1155/2009/645162, (2009).
  • 22. O. Korostynska, K. Arshak, E. Gill, and A. Arshak, “Review on state-of-the-art in polymer based ph sensors”, Sensors 7, 3027–3042 (2007).
  • 23. A. Upadhyay, Y.K. Prajapati, V. Singh, and J.P. Saini, “Sensitivity estimation of metamaterial loaded planer waveguide sensor”, Opt. Quant. Electron 47, 2277–2287 (2015).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-215db378-06b8-4874-8b80-f65bcc08d441
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.