PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heavy metal uptake by novel miscanthus seed-based hybrids cultivated in heavy metal contaminated soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Pobieranie metali ciężkich przez nasienne genotypy miskanta uprawiane na glebie zanieczyszczonej metalami ciężkimi
Języki publikacji
EN
Abstrakty
EN
When heavy metal contaminated soils are excluded from food production, biomass crops offer an alternative commercial opportunity. Perennial crops have potential for phytoremediation. Whilst the conditions at heavy metal contaminated sites are challenging, successful phytoremediation would bring significant economic and social benefits. Seed-based Miscanthus hybrids were tested alongside the commercial clone Miscanthus × giganteus on arable land, contaminated with Pb, Cd and Zn near Katowice. Before the randomized experimental plots were established (25m2 plots with plant density 2/m2) ‘time-zero’ soil samples were taken to determine initial levels of total (aqua regia) and bioavailable (CaCl2 extraction) concentration of Pb, Cd and Zn. After the growing season plant material was sampled during autumn (October, green harvest) and winter (March, brown harvest) to determine differences in heavy metal uptake. Results after the first growing season are presented, including the plot establishment success, biomass yield and heavy metal uptake.
PL
Gleby zanieczyszczone metalem ciężkim powinny być wyłączone z produkcji na cele żywnościowe i paszowe, a uprawa roślin energetycznych może stanowić alternatywę pozwalającą na ich wykorzystanie oraz przywrócenie ich ekonomicznej wartości. Rośliny wieloletnie, w tym gatunki roślin energetycznych posiadają potencjał do fitoremediacji gleb zanieczyszczonych. Pomimo tego, że warunki siedliskowe na terenach zanieczyszczonych mogą być trudne, ich wykorzystanie może przynieść znaczne korzyści gospodarcze i społeczne. W przedstawionej pracy nasienne genotypy miskanta wraz z konwencjonalnym miskantem olbrzymim rozmnażanym z kłączy były uprawiane na glebie rolniczej, zanieczyszczonej metalami ciężkimi. Przed rozpoczęciem eksperymentu pobrano próbki glebowe w celu określenia jej charakterystyki. Po sezonie wegetacyjnym materiał roślinny pobrano do analiz w okresie jesiennym (październik) i zimowym (marzec), aby określić różnice w pobieraniu metali ciężkich pomiędzy testowanymi genotypami jak czasem zbioru. Przedstawiono wyniki po pierwszym sezonie wegetacyjnym, uwzględniając udatność plantacji, produkcję biomasy oraz pobieranie metali ciężkich.
Rocznik
Tom
Strony
121--132
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Institute for Ecology of Industrial Areas, Katowice, Poland
autor
  • Institute for Ecology of Industrial Areas, Katowice, Poland
  • Institute for Ecology of Industrial Areas, Katowice, Poland
  • Institute of Biological, Rural & Environmental Sciences, Aberystwyth University, United Kingdom
  • Institute of Biological, Rural & Environmental Sciences, Aberystwyth University, United Kingdom
autor
  • Biobased Products and Energy Crops, Institute of Crop Science, Hohenheim University, Germany
autor
  • Biobased Products and Energy Crops, Institute of Crop Science, Hohenheim University, Germany
autor
  • Terravesta Ltd., United Kingdom
Bibliografia
  • 1. Barbosa B., Boléo S., Sidella S., Costa J., Duarte M. P., Mendes B., Cosentino S., Fernando A. L.: Phytoremediation of heavy metalcontaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L., BioEnergy Research, 8(4) (2015) 1500-1511.
  • 2. Clifton-Brown J., Lewandowski I.: Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance, The New Phytologist, 148(2) (2000) 287-294.
  • 3. Clifton‐Brown J., McCalmont J., Hastings A.: Development of Miscanthus as a Bioenergy Crop, in: Biofuels and Bioenergy, eds. J. Love, J.A. Bryant, Chichester, UK, John Wiley & Sons 2017, 119-131.
  • 4. Dz.U. 2016 poz. 1395. Decision of the Polish Ministry of Environment on the assessment of soil contamination.
  • 5. Guo H., Hong C., Chen X., Xu Y., Liu Y., Jiang D., Zheng B., Different growth and physiological responses to cadmium of the three Miscanthus species, PloS one, 11(4) (2016) e0153475.
  • 6. ISO 11466:1995. Soil quality — Extraction of trace elements soluble in aqua regia.
  • 7. Jeżowski S., Mos M., Buckby S., Cerazy-Waliszewska J., Owczarzak W., Mocek A., Kaczmarek Z., McCalmont J. P.: Establishment, growth, and yield potential of the perennial grass Miscanthus × giganteus on degraded coal mine soils, Frontiers in Plant Science, 8 (2017) 726.
  • 8. Kalinina O., Nunn C., Sanderson R., Hastings A.F., Van Der Weijde T., Özgüven M., & Clifton-Brown J.: Extending Miscanthus cultivation with novel germplasm at six contrasting sites, Frontiers in Plant Science, 8 (2017) 563.
  • 9. Khan A., Khan S., Khan M. A., Qamar Z., Waqas M.: The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review, Environmental Science and Pollution Research, 22 (2015) 13772-13799.
  • 10. Kocoń A., Jurga B.: The evaluation of growth and phytoextraction potential of Miscanthus x giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn, Environmental Science and Pollution Research, 24(5) (2017) 4990-5000.
  • 11. Korzeniowska J., Stanisławska-Gulbiak E.: Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals, Environmental Sciences and Pollution Research, 22(15) (2015) 11648-11667.
  • 12. Mahar A., Wang P., Ali A., Awasthi M. K., Lahori A. H., Wang Q., Li R., Zhang Z.: Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review, Ecotoxicology and Environmental Safety, 126 (2016) 111-121.
  • 13. Nunn C., Hastings A.F.S.J., Kalinina O., Özgüven M., Schüle H., Tarakanov I. G. & Clifton-Brown J., Environmental influences on the growing season duration and ripening of diverse Miscanthus germplasm grown in six countries. Frontiers in Plant Science 8 (2017) 907.
  • 14. Pavel P. B., Puschenreiter M., Wenzel W.W., Diacu E., Barbu C. H.: Aided phytostabilization using Miscanthus sinensis× giganteus on heavy metalcontaminated soils, Science of the Total Environment, 479 (2014) 125-131.
  • 15. Pandey V.C., Bajpai O., Singh N.: Energy crops in sustainable phytoremediation, Renewable and Sustainable Energy Reviews, 54 (2016) 58-73.
  • 16. Peijnenburg W.J., Zablotskaja M., Vijver M.G.: Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction, Ecotoxicology and Environmental Safety, 67 (2007), 163-179.
  • 17. PN-ISO 11265:1997. Soil quality – Electrical conductance assessment (in Polish).
  • 18. PNR 04032:1998. Soils and mineral soil materials - Soil sampling and determination of particle size distribution in mineral soil material (in Polish).
  • 19. Pogrzeba M., Rusinowski S., Sitko K., Krzyżak J., Skalska A., Małkowski E., Ciszek D., Werle S., McCalmont J.P., Mos M., Kalaji, H. M.: Relationships between soil parameters and physiological status of Miscanthus × giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation, Environmental Pollution, 225 (2017) 163-174.
  • 20. Schierup H. H., Larsen V.J, Macrophyte cycling of zinc, copper, lead and cadmium in the littoral zone of a polluted and a non-polluted lake. I. Availability, uptake and translocation of heavy metals in Phragmites australis (Cav.), Trin, Aquatic Botany, 11 (1981) 197-210.
  • 21. Tóth G., Hermann T., Da Silva M. R., Montanarella, L.: Heavy metals in agricultural soils of the European Union with implications for food safety, Environment international, 88 (2016) 299-309.
  • 22. Van Slycken S., Witters N., Meers E., Peene A., Michels E., Adriaensen K., Ruttens A., Vangronsveld J., Du Laing G., Wierinck I., Van Dael M., Van Passel S., Tack F.: Safe use of metal-contaminated agricultural land by cultivation of energy maize (Zea mays), Environmental Pollution, 178 (2013) 375-380.
  • 23. Yan J., Chen W., Luo F., Ma H., Meng A., Li X., Zhu M., Li S., Zhou H., Zhu W. Han B., Ge S., Li J., Sang T.: Variability and adaptability of Miscanthus species evaluated for energy crop domestication, GCB Bioenergy 4 (2012) 49-60.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-215a7307-054b-4b6d-b8d3-30c64b6ed75d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.