PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations of corrosion behaviour of SnSb12Cu6Pb alloy in 0.1M H2SO4 and 0.5M NaCl solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The results presented the microstructure and corrosive behavior of SnSb12Cu6Pb alloy (B82) in H2SO4 aqueous solution and NaCl aqueous solution. Design/methodology/approach: The electrochemical corrosion has been investigated in two different aqueous solutions: 0.1M sulfuric acid (H2SO4) and 0.5M sodium chloride (NaCl) solution measuring of potential changes relative to immersion time and conducting mass loss test. Microscopic investigations before and after corrosion tests were made using scanning electron microscopy. Findings: The obtained results indicate very good corrosion resistance of the alloy tested in NaCl solution. Corrosion progresses faster in a sulfuric acid aqueous solution compared to sodium chloride aqueous solution. Also, it was found that the dominant mechanism of corrosion degradation in both solutions is selective corrosion which is a particularly undesirable type of corrosion because it involves the loss of one alloying component and the formation of porous structure on the alloy surface. Research limitations/implications: The aqueous solutions used in this study are not a natural working environment of the bearing. However, a comparison of acidic and neutral solutions allows explaining the corrosion behavior of tin babbitts due to contaminants of oil lubricants. Further research should be conducted in more aggressive environments characteristic of industrial conditions. Practical implications: One of the important properties of bearing alloys are corrosion resistance. Corrosion properties are extremely important for the transport and storage of metallic components before they are used. Also, the working environment can have a destructive effect on the properties of the materials used. Industry environment, aging stagnant oil, and some acids may lead to selective corrosion of the tin, copper, lead, or antimony components and leaving a rough and weakened the babbitt surface. Electrochemical corrosion can contribute to the acceleration of bearing wear and consequent to bearing damage. Originality/value: Studies of the corrosion of tin-babbitt bearings are not extensive in the literature due to rare tin corrosion. This study could be an important complement to knowledge about the corrosion behavior of tin-based bearing alloys.
Rocznik
Strony
5--14
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • Department of Materials Science and Non-Ferrous Metals Engineering, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Mickiewicza 30 Av., Cracow 30059, Poland
  • Department of Materials Science and Non-Ferrous Metals Engineering, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Mickiewicza 30 Av., Cracow 30059, Poland
autor
  • Department of Physical Chemistry and Metallurgy of Non-Ferrous Metals, Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Mickiewicza 30 Av., Cracow 30059, Poland
Bibliografia
  • [1] A. Hrynczyszyn, A. Rehmus-Forc, The babbit metals analyze in slide bearings manufacturing process with using Six Sigma method part 1, Archives of Foundry 6/21 (2006) 309-320 (in Polish).
  • [2] M.V.S. Babu, A. R. Krishna, K.N.S. Suman, Review of Journal Bearing Materials and Current Trends, American Journal of Materials Science and Technology 4/2 (2015) 72-83. DOI: https://doi.org/10.7726/ajmst.2015.1006
  • [3] G.C. Pratt, Materials for Plain Bearings, International Metallurgical Reviews 18/2 (1973) 62-88. DOI: https://doi.org/10.1179/imtlr.1973.18.2.62
  • [4] B. Leszczyńska-Madej, M. Madej, J. Hrabia-Wiśnios, Effect of chemical composition on the microstructure and tribological properties of Sn-based alloys, Journal of Materials Engineering and Performance 28/7 (2019) 4065-4073. DOI: https://doi.org/10.1007/s11665-019-04154-4
  • [5] F.A. Sadykov, N.P. Barykin, I.Sh. Valeev, V.N. Danilenko, Influence of the Structural State on Mechanical Behavior of Tin Babbit, Journal of Materials Engineering and Performance 12 (2003) 29-36. DOI: https://doi.org/10.1361/105994903770343448
  • [6] L.A. Branagan, Survey of damage investigation of babbitted industrial bearings, Lubricants 3/2 (2015) 91-112. DOI: https://doi.org/10.3390/lubricants3020091
  • [7] T.H. McCloskey, Troubleshooting Bearing And Lube Oil System Problems, Proceedings of the 24th Turbomachinery Symposium, A&M University, Texas, 1995, 147-166.
  • [8] S.B. Lyon, Corrosion of Tin and its Alloys, in: J.A.R. Tony (ed.), Shreir’s Corrosion, Elsevier, Oxford, 2010.
  • [9] T. Hirasawa, K. Sasaki, M. Taguchi, H. Kaneko, Electrochemical characteristics of Pb-Sb alloys in sulfuric acid solutions, Journal of Power Sources 85/1 (2000) 44-48. DOI: https://doi.org/10.1016/S0378-7753(99)00380-8
  • [10] J. Xu, X. Liu, X. Li, E Barbero, C. Dong, Effect of Sn concentration on the corrosion resistance of Pb-Sn alloys in H2SO4 solution, Journal of Power Sources 155/2 (2006) 420-427. DOI: https://doi.org/10.1016/j.jpowsour.2005.04.026
  • [11] R.W. Wilson, E.B. Shone, The diagnosis of plain bearing failures, in: M.H. Jones, D. Scott (eds.), Industrial Tribology: The Practical Aspects of Friction, Lubrication and Wear, Elsevier, New York, 1991, 115-117.
  • [12] D. Li, P.P. Conway, C. Liu, Corrosion characterization of tin-lead and lead free solders in 3.5 wt.% NaCl solution, Corrosion Science 50/4 (2008) 995-1004. DOI: https://doi.org/10.1016/j.corsci.2007.11.025
  • [13] Y. Gao, C. Cheng, Z. Jie, L. Wang, X. Li, Electrochemical corrosion of Sn–0.75 Cu solder joints in NaCl solution, Transactions of Nonferrous Metals Society of China 22/4 (2012) 977-982. DOI: https://doi.org/10.1016/S1003-6326(11)61273-9
  • [14] A.M. Beccaria, E.D. Mor, G. Bruno, G. Poggi, Investigation on lead corrosion products in seawater and in neutral saline solutions, Materials and Corrosion 33/7 (1982) 416-420. DOI: https://doi.org/10.1002/maco.19820330707
  • [15] D.R. Lide, Handbook of Chemistry and Physics, 84th Edition, CRC Press, Boca Raton, 2003, 8-20–8-29.
  • [16] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon, New York, 1966.
  • [17] W.R. Osório, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, A. Garcia, Microstructure, corrosion behaviour and microhardness of a directionally solidified Sn-Cu solder alloy, Electrochimica Acta 56/24 (2011) 8891-8899. DOI: https://doi.org/10.1016/j.electacta.2011.07.114
  • [18] W.R. Osório, C.M. Freire, R. Caram, A. Garcia, The role of Cu-based intermetallics on the pitting corrosion behavior of Sn-Cu, Ti-Cu and Al-Cu alloys, Electrochimica Acta 77 (2012) 189-197. DOI: https://doi.org/10.1016/j.electacta.2012.05.106
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2156aaff-cff5-4f8d-9482-c84ebdb95b42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.