PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Controlled-Release Fertilizer on Avaibility of Phosphorus, Sulphur, Iron, Copper, Zinc, Manganese and Production of Red Onion (Allium ascalonicum L.)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fertilization plays a crucial role in meeting the nutrient requirements of plants to achieve optimal production. The application of controlled-release fertilizer (CRF) on red onion cultivation holds the potential to enhance fertilizer efficiency while reducing water pollution. This study aimed to investigate the impact of CRF application on the availability of essential nutrients of P, S, Fe, Cu, Zn, Mn, and production of red onion (Allium ascalonicum L.). The research was conducted in two stages, an incubation experiment in laboratories and field experiments. The treatments included three types of fertilizers, P1: NPKCaMgS (13-8-10-5-9-2), P2: NPKS (19-12-15-4), and Mutiara: NPK (16-16-16). For the incubation experiment, two fertilizer doses were used: D6 (600 kg/ha), D12 (1200 kg/ha), along with a control group. For the field experiments, four fertilizer doses were employed: D3 (300 kg/ha), D6 (600 kg/ha), D9 (900 kg/ha), D12 (1200 kg/ha), also with a control group. The results indicated that the availability of P, Cu, and Mn increased with a longer incubation period, while the availability of Fe and Zn decreased over time. The availability of S exhibited irregular patterns with an extended incubation period. Notably, the highest onion production was achieved using NPKCaMgS (13-8-10-5-9-2) at a dose of 300 kg/ha.
Rocznik
Strony
334--343
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University, Bogor, Indonesia
  • Center for Mine Reclamation Studies, International Research Institute for Environment and Climate Change, IPB University, Bogor, Indonesia
  • Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University, Bogor, Indonesia
  • Center for Mine Reclamation Studies, International Research Institute for Environment and Climate Change, IPB University, Bogor, Indonesia
autor
  • Research Centre for Process and Manufacturing Industry Technology, National Research and Innovation Agency, Indonesia
  • Research Centre for Process and Manufacturing Industry Technology, National Research and Innovation Agency, Indonesia
  • Research Centre for Process and Manufacturing Industry Technology, National Research and Innovation Agency, Indonesia
autor
  • Research Centre for Process and Manufacturing Industry Technology, National Research and Innovation Agency, Indonesia
Bibliografia
  • 1. Aisyah S. Pengaruh Pupuk Lepas Lambat terhadap Ketersediaan P, S, Fe, Cu, Zn dan Mn serta Pertumbuhan dan Produksi Bawang Merah (Allium asclonicum L.) pada Latosol 2020.
  • 2. Beck MH, Escosteguy PAV, Dick DP. Modifications of phosphorus in Latosol as a function of humic acids and acidity. Rev Bras Eng Agríc E Ambient 2018; 22: 488–92. https://doi.org/10.1590/18071929/agriambi.v22n7p488-492.
  • 3. Belo T, du Toit LJ, LaHue GT. Reducing the risk of onion bacterial diseases: A review of cultural manage-ment strategies. Agron J 2023;115:459–73. https://doi.org/10.1002/agj2.21301.
  • 4. Bijay-Singh, Sapkota T.B. The effects of adequate and excessive application of mineral fertilizers on the soil. In: Goss MJ, Oliver M, editors. Encycl. Soils Environ. Second Ed., Oxford: Academic Press; 2023, 369–381. https://doi.org/10.1016/ B978-0-12-822974-3.00051-3.
  • 5. Brod E, Øgaard AF, Müller-Stöver DS, Rubæk GH. Considering inorganic P binding in bio-based products improves prediction of their P fertiliser value. Sci Total Environ 2022; 836: 155590. https://doi. org/10.1016/j.scitotenv.2022.155590.
  • 6. Dewi EM, Suwardi, Suryaningtyas DT, Anwar S. Utilization of natural zeolites as Cu (Ii) and Zn (Ii) Ad-sorbent. J Trop Soils 2017; 21: 153–60. https:// doi.org/10.5400/jts.2016.v21i3.153-160.
  • 7. Garza-Alonso CA, Juárez-Maldonado A, GonzálezMorales S, Cabrera-De la Fuente M, Cadenas-Pliego G, Morales-Díaz AB, et al. ZnO nanoparticles as potential fertilizer and biostimulant for lettuce. Heliyon 2023; 9: e12787. https://doi.org/10.1016/j. heliyon.2022.e12787.
  • 8. Geisseler D, Ortiz RS, Diaz J. Nitrogen nutrition and fertilization of onions (Allium cepa L.) – A literature review. Sci Hortic 2022; 291: 110591. https://doi. org/10.1016/j.scienta.2021.110591.
  • 9. Gonzaga MIS, Matias MI de AS, Andrade KR, Jesus AN de, Cunha G da C, Andrade RS de, et al. Aged bio-char changed copper availability and distribution among soil fractions and influenced corn seed germi-nation in a copper-contaminated soil. Chemosphere 2020; 240: 124828. https://doi.org/10.1016/j. chemosphere.2019.124828.
  • 10. Hirzel J, Donnay D, Fernandez C, Meier S, Lagos O, Mejias-Barrera P, et al. Evolution of nutrients and soil chemical properties of seven organic fertilizers in two contrasting soils under controlled conditions. Chil J Agric Anim Sci 2018; 34: 77–88. https://doi. org/10.4067/S0719-38902018005000301.
  • 11. Jose N, Rayanne M, Chaves A, Valdivia de, Leilson C, Maria Z, et al. Effect of phosphorus fertilization on yield and quality of onion bulbs. Afr J Agric Res 2016; 11: 4594–9. https://doi.org/10.5897/ AJAR2016.11560.
  • 12. Kaur H, Hussain SJ, Mir RA, Chandra Verma V, Naik B, Kumar P, et al. Nanofertilizers – emerging smart fertilizers for modern and sustainable agriculture. Biocatal Agric Biotechnol 2023; 54: 102921. https://doi.org/10.1016/j.bcab.2023.102921.
  • 13. Kazimierczak R, Średnicka-Tober D, Barański M, Hallmann E, Góralska-Walczak R, Kopczyńska K, et al. The effect of different fertilization regimes on yield, selected nutrients, and bioactive compounds pro-files of onion. Agronomy 2021; 11: 883. https:// doi.org/10.3390/agronomy11050883.
  • 14. Kementan S.J.K.P. Outlook Komoditas Hortikultura Bawang Merah Tahun 2020. Jakarta: Pusat Data dan Sistem Informasi Pertanian; 2020.
  • 15. Kleiber T, Golcz A, Krzesinski W. Effect of magnesium nutrition of onion (Allium cepa L.). Part I. Yielding and nutrient status. Ecol Chem Eng S 2012;19:97–105. https://doi.org/10.2478/ v10216-011-0010-2.
  • 16. Lee J, Min B. Evaluation of controlled release fertilizer on bulb yield, nutrient content, and storage qual-ity of overwintering intermediate-day onions. Korean J Soil Sci Fertil 2022;55:324–42. https://doi. org/10.7745/KJSSF.2022.55.4.324.
  • 17. Liu G, Zotarelli L, Li Y, Dinkins D, Wang Q, OzoresHampton M. Controlled-release and slow-release fertilizers as nutrient management tools. EDIS 2014. https://doi.org/10.32473/edis-hs1255-2014.
  • 18. Lv H, Ji C, Ding J, Yu L, Cai H. High levels of zinc affect nitrogen and phosphorus transformation in rice rhizosphere soil by modifying microbial communities. Plants 2022; 11: 2271. https://doi. org/10.3390/plants11172271.
  • 19. Mazhar Z, Akhtar J, Alhodaib A, Naz T, Zafar MI, Iqbal MM, et al. Efficacy of ZnO nanoparticles in Zn fortification and partitioning of wheat and rice grains under salt stress. Sci Rep 2023; 13: 2022. https://doi.org/10.1038/s41598-022-26039-8.
  • 20. Meena V. Effect of phosphorus doses on growth and yield of onion (Allium cepa L.) cv. Nasik red. Sci Dig 2007; 27: 301–2.
  • 21. Nainggolan G.D. Pola Pelepasan Nitrogen dari Pupuk Tersedia Lambat (Slow Release Fertilizer) Urea-Zeolit-Asam Humat 2010.
  • 22. Nichols PK, Dabach S, Abu-Najm M, Brown P, Camarillo R, Smart D, et al. Alternative fertilization prac-tices lead to improvements in yield-scaled global warming potential in almond orchards. Agric Ecosyst Environ 2024; 362: 108857. https://doi. org/10.1016/j.agee.2023.108857.
  • 23. Rajan M, Shahena S, Chandran V, Mathew L. Chapter 3 - Controlled release of fertilizers—concept, reality, and mechanism. In: Lewu FB, Volova T, Thomas S, K.r. R, editors. Control. Release Fertil. Sustain. Agric., Academic Press; 2021, 41–56. https://doi. org/10.1016/B978-0-12-819555-0.00003-0.
  • 24. Rajput, Panhwar Q, Naher U, Rajput S, Hossain E, Shamshuddin J. Influence of incubation period, tempera-ture and different phosphate levels on phosphate adsorption in soil. Am J Agric Biol Sci 2014; 9: 251–60. https://doi.org/10.3844/ ajabssp.2014.251.260.
  • 25. Recena R, García-López AM, Delgado A. Zinc uptake by plants as affected by fertilization with Zn sulfate, phosphorus availability, and soil properties. Agronomy 2021; 11: 390. https://doi.org/10.3390/ agronomy11020390.
  • 26. Sedlacek CJ, Giguere AT, Pjevac P. Is too much fertilizer a problem? Front Young Minds 2020; 8: 63. https://doi.org/10.3389/frym.2020.00063.
  • 27. Shura G, Beshir HM, Haile A. Improving onion productivity through optimum and economical use of soil macronutrients in Central Rift Valley of Ethiopia. J Agric Food Res 2022; 9: 100321. https://doi. org/10.1016/j.jafr.2022.100321.
  • 28. Soltys L, Mironyuk I, Tatarchuk T, Tsinurchyn V. Zeolite-based composites as slow release fertilizers (re-view) 2020; 21. https://doi.org/10.15330/ pcss.21.1.89-104.
  • 29. Sudaryono T. Effect of plant growth regulator on red onion cultivation from true seed shallot (TSS). In-dones J Environ Sustain Dev 2018; 9. https://doi. org/10.21776/ub.jpal.2018.009.01.07.
  • 30. Suddin AF, Maintang, Asri M, Wahditiya AA, Rauf AW, Syam A. The growth response and shallot produc-tion on some dosage of npk nitrate compound fertilizer 16-16-16. IOP Conf Ser Earth Environ Sci 2021; 911: 012048. https://doi. org/10.1088/1755-1315/911/1/012048.
  • 31. Suwardi. Indonesian food security during the Covid-19 pandemic. IOP Conf Ser Earth Environ Sci 2021; 756: 012037. https://doi. org/10.1088/1755-1315/756/1/012037.
  • 32. Tian H, Zhang L, Dong J, Wu L, Fang F, Wang Y, et al. A one-step surface modification technique im-proved the nutrient release characteristics of controlled-release fertilizers and reduced the use of coat-ing materials. J Clean Prod 2022; 369: 133331. https://doi.org/10.1016/j.jclepro.2022.133331.
  • 33. Umar W, Czinkota I, Gulyás M, Aziz T, Hameed MK. Development and characterization of slow release N and Zn fertilizer by coating urea with Zn fortified nano-bentonite and ZnO NPs using various binders. Environ Technol Innov 2022; 26: 102250. https://doi.org/10.1016/j.eti.2021.102250.
  • 34. Vejan P, Khadiran T, Abdullah R, Ahmad N. Controlled release fertilizer: A review on developments, ap-plications and potential in agriculture. J Controlled Release 2021; 339: 321–334. https://doi. org/10.1016/j.jconrel.2021.10.003.
  • 35. Wang S, Xu L, Hao M. Impacts of long-term micronutrient fertilizer application on soil properties and mi-cronutrient availability. Int J Environ Res Public Health 2022; 19: 16358. https://doi.org/10.3390/ ijerph192316358.
  • 36. Wang S, Yang L, Su M, Ma X, Sun Y, Yang M, et al. Increasing the agricultural, environmental and eco-nomic benefits of farming based on suitable crop rotations and optimum fertilizer applications. Field Crops Res 2019; 240: 78–85. https://doi. org/10.1016/j.fcr.2019.06.010.
  • 37. Wang Y, Xu Y, Liang X, Li L, Huang Q. Soil addition of MnSO4 reduces wheat Cd accumulation by simultaneously increasing labile Mn and decreasing labile Cd concentrations in calcareous soil: A two-year pot study. Chemosphere 2023; 317: 137900. https://doi. org/10.1016/j.chemosphere.2023.137900.
  • 38. Wei X, Mingde H, Mingan S. Copper fertilizer effects on copper distribution and vertical transport in soils. Geoderma 2007; 138: 213–20. https://doi. org/10.1016/j.geoderma.2006.11.012.
  • 39. Wu Z, Feng X, Zhang Y, Fan S. Repositioning fertilizer manufacturing subsidies for improving food securi-ty and reducing greenhouse gas emissions in China. J Integr Agric 2023. https://doi. org/10.1016/j.jia.2023.12.007.
  • 40. Yousaf M, Li J, Lu J, Ren T, Cong R, Fahad S, et al. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci Rep 2017; 7: 1270. https://doi. org/10.1038/s41598-017-01412-0.
  • 41. Zhai L, Wang Z, Zhai Y, Zhang L, Zheng M, Yao H, et al. Partial substitution of chemical fertilizer by or-ganic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil Tillage Res 2022; 217: 105287. https://doi. org/10.1016/j.still.2021.105287.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21551c41-7aed-42af-b82b-77bf29448d48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.