PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chosen Aspects Of Investigations Of Solar Cells With The Laser Beam Induced Current Technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents maps of spatial distributions of the short circuit current Isc(x,y) and the open circuit voltage Uoc(x,y) of the investigated low cost solar cells. Visible differences in values of these parameters were explained by differences in the serial and shunt resistances determined for different points of solar cells from measurements of I–V characteristics. The spectral dependence of the photo voltage of solar cell is also shown, discussed and interpreted in the model of amorphous and crystal silicon.
Rocznik
Strony
241--250
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr., wzory
Twórcy
  • Koszalin University of Technology, Department of Electronics and Computer Sciences, Śniadeckich 2, 75-453 Koszalin, Poland
autor
  • Koszalin University of Technology, Department of Electronics and Computer Sciences, Śniadeckich 2, 75-453 Koszalin, Poland
  • Koszalin University of Technology, Department of Electronics and Computer Sciences, Śniadeckich 2, 75-453 Koszalin, Poland
Bibliografia
  • [1] Quaschning, V. (2004). Photovoltaic systems - Technology Fundamentals. Manufacturing, Renewable Energy, 1, 81-84.
  • [2] Bell, R.O., Kalejs, J.P. (1998). Growth of silicon sheets for photovoltaic application. Journal of Materials Research, 13(10), 2732-2739.
  • [3] Green, M.A. (2002). Photovoltaics Principles. Physica E, 14, 11-17.
  • [4] Miles, R.W., Hynes, K.M., Forbes, I. (2005). Photovoltaic solar cells: An overview of state-of the-art cell development and environmental issues. Progress in Crystal Growth and Characterization of Materials, 51, 1-42.
  • [5] Guha, S., Yang, J., Banerjee, A., Glatfelter, T. (1998). Amorphous silicon alloy solar cells for space application. Vienna, Austria. 2nd World Conference & Exhibition on PV Solar Energy Conversion, 3609-3612.
  • [6] Osterwald, C.R. Standards, calibration and testing of PV modules and solar cells. (eds. Markvart, T., Castaner, L.). Practical Handbook of Photovoltaics, Elsevier, Kidlington Oxford, 793.
  • [7] Emery, K. (2003). Measurement and characterization of solar cells and modules. (eds. Luque, A., Hegedus, S.). Handbook of Photovoltaic Science and Engineering, John Wiley & Sons Ltd, Chichester, UK, 701.
  • [8] Würfel, P., Trupke, T., Puzzer, T., Schäffer, E., Warta, W., Glunz, S.W. (2007). Diffusion lengths of silicon solar cells from luminescence images. Journal of Applied Physics, 101, 123110.
  • [9] Giesecke, J.A., Kasemann, M., Warta, W. (2009). Determination of local minority carrier diffusion lengths in crystalline silicon from luminescence images. Journal of Applied Physics, 106, 014907.
  • [10] Kaminski, A., Jouglar, J., Mergui, M., Jourlin, Y., Bouillé, A., Vuillermoz, P.L., Laugier, A. (1998). Infrared characterization of hot spots in solar cells with high precision due to signal treatment processing. Solar Energy Materials and Solar Cells, 51, 233-242.
  • [11] Hoppe, H., Bachmann, J., Muhsin, B., Drüe, K.H., Riedel, I., Gobsch, G., Buerhop-Lutz, C., Brabec, Ch.J., Dyakonov, V. (2010). Quality control of polymer solar modules by lock-in thermography. Journal of Applied Physics, 107, 014505.
  • [12] Bachmann, J., Buerhop-Lutz, C., Deibel, C., Riedel, I., Hoppe, H., Brabec, C.J., Dyakonov, V. (2010). Organic solar cells characterized by dark lock-in thermography. Solar Energy Materials and Solar Cells, 94, 642-647.
  • [13] Cole, E.I., (2004). Beam-Based Defect Localization Methods. Microelectronics Failure Analysis (Materials Park: ASM International).
  • [14] Zook, J.D., Maciolik, R.B., Heaps, J.D. (1980). Effects of Grain Boundaries in Polycrystalline Solar Cells. Applied Phyics Letters, 37, 223-226.
  • [15] Hari Rao, C.V., Bates, H.E., Ravi, K.V. (1976). Electrical Effects of SiC Inclusions in EFG Silicon Ribbon Solar Cells. Journal of Applied Physics, 47, 2614-2620.
  • [16] Belouet, C., Hervo, J., Matres, R., Phuoc, N.T., Pertus, M. (1978). Growth and Characterization of Polysilicon Layers Achieved by the Ribbon-Against-Drop Process. Proc. 13th IEEE Photovoltaics Specialists Conference, 131-136.
  • [17] Sawyer, W.D. (1986). An Improved Method of Light-Beam-Induced Current Characterization of Grain Boundaries. Journal of Applied Physics, 59, 2361-2368.
  • [18] Galloway, S.A., Brinkman, A.W., Durose, K., Wilshaw, P.R., Holland, A.J., (1996). A Study of the Effects of Post-Deposition Treatment on CdS/CdTe Thin-Film Solar Cells Using High-Resolution optical beam induced current. Applied Physics Leters, 68, 3725-3727.
  • [19] Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y. (2005). High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 4, 864-868.
  • [20] Shirland, F. (1966). The history, design, fabrication and performance of CdS thin film solar cells. Advanced Energy Conversion, 6, 201-202.
  • [21] Ouennoughi, Z., Chegaar, M. (1999). A simpler method for extracting solar cell parameters using the conductance method. Solid-State Electronics, 43, 1985-1988.
  • [22] Nehaoua, N., Chergui, Y., Mekki, D.E. (2009). Determination of organic solar cell parameters based on single or multiple pin structures. Vacuum, 84, 326-329.
  • [23] Chegaar, M., Azzouzi, G., Mialhe, P. (2006). Simple parameter extraction method for illuminated solar cells. Solid-State Electronics, 50, 1234-1237.
  • [24] Bouzidi, K., Chegaar, M., Bouhemadou, A. (2007). Solar cells parameters evaluation considering the series and shunt resistance. Solar Energy Materials and Solar Cells, 91, 1647-1651.
  • [25] Jain, A., Kapoor, A. (2005). A new method to determine the diode ideality factor of real solar cell using Lambert W-function. Solar Energy Materials and Solar Cells, 85, 391-396.
  • [26] Jain, A., Kapoor, A. (2005). A new approach to study organic solar cell using Lambert function. Solar Energy Materials and Solar Cells, 86, 197-205.
  • [27] Kunz, G., Wagner, A. (2004). Internal series resistance determined of only one IV-curve under illumination. 19th European Photovoltaic Solar Energy Conference, Paris, France, Paper No. 5BV.2.70.
  • [28] Zhang, Ch., Zhang, J., Hao, Y., Lin, Z., Zhu, Ch. (2011). A simple and efficient solar cell parameter extraction method from a single current-voltage curve. Journal of Applied Physics, 110, 064504.
  • [29] Maliński, M., Chrobak, Ł. (2010). Photoacoustic operation modes for determination of absorption spectra of SiGe mixed crystals. Opto-Electronics Review, 18(2), 190-196.
  • [30] Chrobak, Ł., Malinski, M., Strzalkowski, K., Zakrzewski, J. (2012). Energy efficiency of near infrared cobalt luminscence in ZnSe:Co determined by a photoacoustic method. Opto-Electronics Review, 20(1), 91-95.
  • [31] Maliński, M., Pawlak, M., Chrobak, Ł., Pal, S., Ludwig, A. (2015). Monitoring of Amorfization of the Oxygen Implanted Layers in Silicon Wafers Using Photothermal Radiometry and Modulated Free Carrier Absorption. Applied Physics A - Materials Science & Processing, 118(3), 1009-1014.
  • [32] Chrobak, Ł., Maliński, M., Pawlak, M. (2014). Measurements of the Optical Absorption Coefficient of Ar+8 Ion Implanted Silicon Layers Using the Photothermal Radiometry and the Modulated Free Carrier Absorption Methods. Infrared Physics & Technology, 67, 604-608.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2154eed1-8b48-4534-a432-f70a3c42b5b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.