Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article shows the possibility of using TFBG gratings to measure the radius of curvature of fiber bending in conditions of variable polarization of the introduced light. Most of the modern, stable light sources generate light with a high degree of polarization. Due to the spatial asymmetry, the direction of the light polarization plane affects the spectral parameters of individual modes. For this reason, in the measurement systems using TFBGs presented so far it becomes necessary to determine and control the state of light polarization directly in front of the periodic structure. The article presents the determined spectral parameters of the cladding modes which allow bending measurements regardless of the direction of polarization of the introduced light. Thanks to this, the measuring system can be constructed without providing control of the introduced light polarization angle, which makes its construction simpler. When using TFBGs with an angle of 2°, the accuracy of determining the bending radius in the range from 15 mm to 30 mm when changing the angle of the plane of polarization in the full range is 0.318 mm in the case of changes in the transmission coefficient. For changes in the wavelength of the selected cladding mode, the accuracy is 0.3203 mm, with the input light polarization being changed in the range from 0° (P type) to 90° (S type).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
737--749
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr., wzory
Twórcy
autor
- Lublin University of Technology, Electrical and Information Technology Department, Nadbystrzycka Str. 36D, Lublin, Poland
autor
- Lublin University of Technology, Electrical and Information Technology Department, Nadbystrzycka Str. 36D, Lublin, Poland
Bibliografia
- [1] Dziubiński, G., Harasim, D., Skorupski, K., Mussabekov, K., Kalizhanova, A., & Toigozhinova, A. (2016). Optimization of fiber optic sensors parameters for temperature measurement. Rocznik Ochrona Środowiska, 18(2), 309-324. https://ros.edu.pl/images/roczniki/2016/No2/23_ROS_N2_V18_R2016.pdf (in Polish)
- [2] Caucheteur, C., Guo, T., & Albert, J. (2017). Polarization-Assisted Fiber Bragg Grating Sensors: Tutorial and Review. Journal of Lightwave Technology, 35(16), 3311-3322. https://doi.org/10.1109/JLT.2016.2585738
- [3] Lo Presti, D., Massaroni, C., Jorge, C.S., Domingues, M.F., Sypabekova, M., Barrera, D., Floris, I., Massari, L., Oddo, C.M., & Sales, S. (2020). Fiber Bragg Gratings for Medical Applications and Future Challenges: A Review. IEEE Access, 8, 156863-156888. https://doi.org/10.1109/ACCESS.2020.3019138
- [4] Harasim, D., & Kisała, P. (2015). Interrogation systems for multiplexed fiber Bragg sensors. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 4(5), 77-84. https://doi.org/10.5604/20830157.1176580 (in Polish)
- [5] Guo, T., Liu, F., Guan, B.O., & Albert, J. (2016). Tilted fiber grating mechanical and biochemical sensors. Optics & Laser Technology, 78B, 19-33. https://doi.org/10.1016/j.optlastec.2015.10.007
- [6] Dong, X., Zhang, H., Liu, B., & Miao, Y. (2011). Tilted fiber Bragg gratings: Principle and sensing applications. Photonic Sensors, 1, 6-30. https://doi.org/10.1007/s13320-010-0016-x
- [7] Pilate, J., Renoirt, J.M., Caucheteur, C., Raquez, J.M., Meyer, F., Megret, P., Dubois, P., & Damman, P. (2014). Tilted fiber Bragg gratings as a new sensing device for in situ and real time monitoring of surface-initiated polymerization. Polymer Chemistry, 5(7), 2506-2512. https://doi.org/10.1039/C3PY01421E
- [8] Cieszczyk, S., Kisała, P., & Mroczka, J. (2019). New Parameters Extracted from Tilted Fiber Bragg Grating Spectra for the Determination of the Refractive Index and Cut-Off Wavelength. Sensors, 9(19), 1-11. https://doi.org/10.3390/s19091964
- [9] Cieszczyk, S., Harasim, D., & Kisala, P. (2017). A Novel Simple TFBG Spectrum Demodulation Method for RI Quantification. IEEE Photonics Technology Letters, 24(29), 2264-2267. https://doi.org/10.1109/LPT.2017.2768601
- [10] Duan, Y., Wang, F., Zhang, X., Liu, Q., Lu, M., Ji, W., Zhang, Y., Jing, Z., & Peng, W. (2021). TFBG-SPR DNA-Biosensor for Renewable Ultra-Trace Detection of Mercury Ions. Journal of Lightwave Technology, 39(12), 3903-3910. https://opg.optica.org/jlt/abstract.cfm?URI=jlt-39-12-3903
- [11] Wang, Q., Jing, J., & Wang, B. (2019). Highly Sensitive SPR Biosensor Based on Graphene Oxide and Staphylococcal Protein A Co-Modified TFBG for Human IgG Detection. IEEE Transactions on Instrumentation and Measurement, 68, 3350-3357. https://doi.org/10.1109/TIM.2018.2875961
- [12] Kim, D.W., Zhang, Y., Cooper, K.L., & Wang, A. (2005). In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement. Applied Optics, 44(26), 5368-5373. https://doi.org/10.1364/AO.44.005368
- [13] Esposito, F., Sansone, L., Srivastava, A., Baldini, F., Campopiano, S., Chiavaioli, F., Giordano, M., Giannetti, A., & Iadicicco, A. (2020, October). Fiber optic biosensor for inflammatory markers based on long period grating. In 2020 Ieee Sensors (pp. 1-4). IEEE. https://doi.org/10.1109/SENSORS47125.2020.9278773
- [14] Harasim, D. (2017). The influence of fiber bending on polarization-dependent twist sensor based on tilted Bragg grating. Metrology and Measurement Systems, 24(3), 577-584. https://doi.org/10.1515/mms-2017-0038
- [15] Lu, Y., Shen, C., Chen, D., Chu, J., Wang, Q., & Dong, X. (2014). Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties. Optical Fiber Technology, 20(5), 491-494. https://doi.org/10.1016/j.yofte.2014.05.011
- [16] Budinski, V., & Donlagic, D. (2017). Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review. Sensors, 17(3), 443. https://doi.org/10.3390/s17030443
- [17] Kisała, P., Skorupski, K., Cięszczyk, S., Panas, P., & Klimek, J. (2018). Rotation and twist measurement using tilted fiber Bragg gratings, Metrology and Measurement Systems, 25(3), 429-440. https://doi.org/10.24425/123893
- [18] Feng, D., Zhou, W., Qiao, X., & Albert, J. (2015). Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings. Scientific Reports, 5, 17415. https://doi.org/10.1038/srep17415
- [19] Albert, J., Shao, L.Y., & Caucheteur, C. (2013). Tilted fiber Bragg grating sensors. Laser & Photonics Reviews, 7(1), 83-108. https://doi.org/10.1002/lpor.201100039
- [20] Kisała, P., Mroczka, J., Cięszczyk, S., Skorupski, K., & Panas, P. (2018). Twisted tilted fiber Bragg gratings: New structures and polarization properties. Optics Letters, 43, 4445-4448. https://doi.org/10.1364/OL.43.004445
- [21] Harasim, D. (2021). Temperature-insensitive bending measurement method using optical fiber sensors. Sensors and Actuators A: Physical, 332(2), 113207. https://doi.org/10.1016/j.sna.2021.113207
Uwagi
1. This work was supported by the Lublin University of Technology grant number FD-20/EE-2/305.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2153a3e8-2605-44ff-bdf0-4a201a2ab701