Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the numerical approach to the safety and ergonomics issues regarding the biomechanics of the mining machine operator. Based on actual accidents, the authors analyzed the current requirements for protective structures in regard to operator safety aspects. The study found that the current type-approval tests do not examine phenomena related to typical accidents in underground mines, such as rock bursts resulting in thill uplift, lateral rock tosses, or cover caving. In many cases it may result in severe or fatal injuries of the mining machine operators. Thus, the authors incorporate a precise human model into operator safety tests and conducted numerical simulations by the use of the coupled Finite Element and MulitBody codes. To mitigate the injuries, the state-of-the-art seat absorber was implemented underneath a typical operator's seat. The device was designed to dissipate the kinetic energy during the process of rapid floor uplift and immediate velocity change from the cab to gallery roof impact. In order to compare the energy-dissipating capabilities of the absorber two approaches were selected for the same boundary conditions: a standard seat and seat with absorber mounted in the cab during the impact. The cab initial velocity was the main variable during the simulations. Finally, the injury criteria for the standard seat and the new approach with the energy-absorbing device were collated and contrasted.
Czasopismo
Rocznik
Tom
Strony
503--512
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- Machine Design and Research, Mechanical Department, Wrocław University of Technology, Poland
autor
- Machine Design and Research, Mechanical Department, Wrocław University of Technology, Poland
autor
- Machine Design and Research, Mechanical Department, Wrocław University of Technology, Poland
autor
- Machine Design and Research, Mechanical Department, Wrocław University of Technology, Poland
Bibliografia
- [1] P.K. Kaiser, B.H. Kim, Rock mechanics challenges in underground construction and mining, Shirms (2008) 1–16.
- [2] J.M. Patterson, S.A. Shappell, Operator error and system deficiencies: analysis of 508 mining incidents and accidents from Queensland, Australia using HFACS, Accident Analysis and Prevention 42 (2010) 1379–1385. , http://dx.doi.org/ 10.1016/j.aap.2010.02.018.
- [3] M.G. Lenné, P.M. Salmon, C.C. Liu, M. Trotter, A systems approach to accident causation in mining: an application of the HFACS method, Accident Analysis and Prevention 48 (2012) 111–117. , http://dx.doi.org/10.1016/j.aap.2011.05.026.
- [4] J. Karliński, M. Ptak, P. Działak, Simulation tests of roll-over protection structure, Archives of Civil and Mechanical Engineering 13 (2013) 57–63. , http://dx.doi.org/10.1016/j. acme.2012.12.001.
- [5] P. Gore, R. Barjibhe, Design of protective structure of operator cabin against falling object (FOPS), International Journal of Latest Trends in Engineering and Technology 3 (2014) 228– 236. http://ijltet.org/wp-content/uploads/2014/04/39.pdf.
- [6] P. Dzialak, M. Ptak, J. Karlinski, A. Iluk, Injury biomechanics of a mining machine operator, in: IRCOBI Conf. Proc., 2014 http://trid.trb.org/view.aspx?.id=1324448 (accessed 24.02.15).
- [7] V. Väizene, I. Valgma, R. Iskül, M. Kolats, M. Nurme, V. Karu, High selective oil shale mining, Oil Shale 30 (2013) 305, http:// dx.doi.org/10.3176/oil.2013.2S.10.
- [8] K. Schmitt, P. Niederer, F. Walz, Trauma Biomechanics, 2010 http://link.springer.com/content/pdf/10.1007/ 978-3-642-53920-6.pdf (accessed 13.03.15).
- [9] J. Karliński, E. Rusiński, T. Smolnicki, Protective structures for construction and mining machine operators, Automation in Construction 17 (2008) 232–244.
- [10] D. Derlukiewicz, J. Karliński, A. Iluk, The operator protective structures testing for mining machines, Solid State Phenomena 165 (2010) 256–261.
- [11] N. Perera, D. Thambiratnam, B. Clark, Safety enhancement of operator protection systems on self-propelled mining equipment, Australasian Mine Safety Journal (2011).
- [12] Netherlands Organization for Applied Scientific Research TNO, Human Models Manual, Madymo Release 7.4, TNO, 2011.
- [13] A. Tabiei, C. Lawrence, E.L. Fasanella, Validation of finite element crash test dummy models of the prediction of orion crew member injruies during a simulated vehicle landing, in: 10th LS-DYNA Users Conf., 2009.
- [14] O. Oliva-Perez, Evaluation of the FAA Hybrid III 50th Percentile Anthropometric Test Dummy Under the Far 23.562 and 25.562 Emergency Landing Conditions for the Combined Horizontal-Vertical Dynamic Loading, 2010 http:// soar.wichita.edu/handle/10057/3319 (accessed 25.02.15).
- [15] Humanetics, FAA HIII-50th Dummy j Humanetics ATD, (n.d.). http://www.humaneticsatd.com/crash-test-dummies/ aerospace-military/faa-hiii-50th (accessed 02.03.15).
- [16] V. Gowdy, R. DeWeese, M. Beebe, B. Wade, A Lumbar Spine Modification to the Hybrid III ATD for Aircraft Seat Tests, 1999 http://papers.sae.org/1999-01-1609/ (accessed 13.02.15).
- [17] J. Karliński, M. Ptak, P. Działak, E. Rusiński, Strength analysis of bus superstructure according to Regulation No. 66 of UN/ ECE, Archives of Civil and Mechanical Engineering 14 (2014) 342–353. , http://dx.doi.org/10.1016/j.acme.2013.12.001.
- [18] J. Czmochowski, P. Moczko, P. Odyjas, D. Pietrusiak, Tests of rotary machines vibrations in steady and unsteady states on the basis of large diameter centrifugal fans, Eksploatacja i Niezawodnosc 16 (2014) 211–216.
- [19] X. Huixian, Finite element analysis of roll-over protective structure and falling object protective structure of loader, Mining and Processing Equipment (2004) http://en.cnki.com. cn/Article_en/CJFDTOTAL-KSJX200403012.htm.
- [20] J. Tokarczyk, Methods for verification of virtual prototypes of mining machines for strength criterion, in: Proc. World Congr. Eng., 2011.
- [21] E. Chlebus, B. Dybała, T. Boratyński, Methods and models for new product prototyping, in: Mod. Trends Manuf. Second Int. CAMT Conf., Wrocław, (2003) 37–44.
- [22] GRAMMER, GRAMMER AG: Welcome to the GRAMMER Website, (n.d.). http://www.grammer.com/en/welcome-to- the-grammer-website.html (accessed 19.04.14).
- [23] Z. Stamboliska, E. Rusiński, P. Moczko, Proactive Condition Monitoring of Low-Speed Machines, Springer International Publishing, Cham, 2015, http://dx.doi.org/10.1007/978-3-319- 10494-2.
- [24] S. Żółkiewski, Damped vibrations problem of beams fixed on the rotational disk, International Journal of Bifurcation and Chaos 21 (2011) 3033–3041. , http://dx.doi.org/10.1142/ S0218127411030337.
- [25] Ł. Mazurkiewicz, J. Małachowski, K. Damaziak, P. Baranowski, P. Gotowicki, Identification of layers distribution in the composite coupon using finite element method and three point bending test, Acta Mechanica et Automatica 7 (2013) 160–165. , http://dx.doi.org/10.2478/ama-2013-0027.
- [26] K. Kietlinski, C. Rzymkowski, An attempt to predict a risk of some of the knee region ski injuries by means of computer simulations, Journal of ASTM International (2005) http://www.astm.org/cgi-bin/scholar.cgi?JAI11970 (accessed 12.01.15).
- [27] B. Bartczak, D. Gierczycka-Zbrożek, Z. Gronostajski, S. Polak, A. Tobota, The use of thin-walled sections for energy absorbing components: a review, Archives of Civil and Mechanical Engineering 10 (2010) 5–19. , http://dx.doi.org/ 10.1016/S1644-9665(12)60027-2.
- [28] P. Kaczyński, B. Bartczak, The influence of orientation of segmented die on clinch joints mechanical properties, Journal of Machine Engineering 14 (2014) 126–136. http://yadda.icm.edu. pl/yadda/element/bwmeta1.element.baztech-55fbbce2-77dd- 47e1-bd71-aa509f427d59 (accessed 06.12.14).
- [29] G. Lu, T.X. Yu, Energy Absorption of Structures and Materials, Elsevier, 2003.
- [30] R.T. Jardin, F.A.O. Fernandes, A.B. Pereira, R.J. Alves de Sousa, Static and dynamic mechanical response of different cork agglomerates, Materials and Design 68 (2015) 121–126. , http:// dx.doi.org/10.1016/j.matdes.2014.12.016.
- [31] GRAMMER, GRAMMER AG: MSG85 Series, (n.d.). http://usa. grammer.com/usa/seating-solutions/turf-care-seating/ msg85-series.html (accessed 12.06.14).
- [32] M. Ptak, E. Rusiński, J. Karliński, S. Dragan, Evaluation of kinematics of SUV to pedestrian impact—lower leg impactor and dummy approach, Archives of Civil and Mechanical Engineering 12 (2012) 68–73. , http://dx.doi.org/10.1016/j. acme.2012.03.016.
- [33] M. Ptak, K. Konarzewski, Numerical technologies for vulnerable road user safety enhancement, New Contributions in Information Systems (2015), http://dx.doi.org/10.1007/978-3- 319-16528-8_33.
- [34] M. Papadrakakis, G. Stavroulakis, A. Karatarakis, A new era in scientific computing: domain decomposition methods in hybrid CPU-GPU architectures, Computer Methods in Applied Mechanics and Engineering 200 (2011) 1490–1508. , http://dx.doi.org/10.1016/j.cma.2011.01.013.
- [35] C. Bastien, C. Neal-Sturgess, M.V. Blundell, Influence of vehicle secondary impact following an emergency braking on an unbelted occupant's neck, head and thorax injuries, International Journal of Crashworthiness 18 (2013) 215–224. , http://dx.doi.org/10.1080/13588265.2013.775094.
- [36] E. Wong, Abbreviated Injury Scale, Encyclopedia of Clinical Neuropsychology (2011) http://link.springer.com/content/ pdf/10.1007/978-0-387-79948-3_2.pdf (accessed 13.03.15).
- [37] F.A.O. Fernandes, R.J.S. Pascoal, R.J. Alves de Sousa, Modelling impact response of agglomerated cork, Materials and Design 58 (2014) 499–507. http://dx.doi.org/10.1016/j.matdes.2014.02.011.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-215393f0-3bb4-4b80-9bbd-1599a815d0ae