Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The research was carried out using FEM simulation of heat treatment of the surface layer of PMHSS6-5-3 steel using a laser. Design/methodology/approach FEM calculations were made using the ANSYS package. The area of FEM simulation was the calculation of heat propagation during laser processing in various process variants, considering the power of the laser beam and the method of delivering the powder to the melting zone. FEM calculations concerned five different three-dimensional models. The proposed model was based on the non-linear thermal conductivity change, specific heat and density depending on temperature. The heat supply to the processing site was assumed to be a heat beam corresponding to a laser power of 1.4, 1.7, and 2.1 kW. Latent heat effects are considered in solidification analysis. The melting point consists of the same material as the substrate, and no chemical reaction occurs there. The properties of the simulated materials and their surface condition depend on absorbency. Findings The remelting depth presented in the simulation is close to the depth measured in experimental tests. There were slight differences in the shape of the melted zone between the simulation and the microscope images. The heat flux considered in the simulation is part of the heat transfer mechanism.. The final shape of the crystallised pool will depend on a larger number of parameters. Practical implications Laser technology is now widely used in industry. Many surface engineering technologies use a heat source such as a precisely controlled laser beam. The amount of heat supplied allows operations related to heating the material in order to perform heat treatment, remelting the material and alloying. Originality/value The work contains a description of computer simulation and real tests on PMHSS6-5-3 high-speed steel, the results of which were compared with each other in order to determine the compliance of the computer method with reality.
Wydawca
Rocznik
Tom
Strony
93--101
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Zilina, Zilina, Slovakia
Bibliografia
- [1] J. Kusiński, S. Kac, A. Kopia, A. Radziszewska, M. Rozmus-Górnikowska, B. Major, L. Major, J. Marczak, A. Lisiecki, Laser modification of the materials surface, Bulletin of the Polish Academy of Sciences. Technical Sciences 60/4 (2012) 711-728. DOI: https://doi.org/10.2478/v10175-012-0083-9
- [2] A. Klimpel, L.A. Dobrzański, D. Janicki, A. Lisiecki, Abrasion resistance of GMA metal cored wires surfaced deposits, Journal of Materials Processing Technology 164-165 (2005) 1056-1061. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.242
- [3] A. Śliwa, Application of the Finite Elements Method for computer simulation of properties of surface layers, Archives of Materials Science and Engineering 86/2 (2017) 56-85. DOI: https://doi.org/10.5604/01.3001.0010.4886
- [4] R. Colaco, E. Gordo, E.M. Ruiz-Navas, M. Otasevic, R. Vilar, A comparative study of the wear behaviour of sintered and laser surface melted AISI M42 high speed steel diluted with iron, Wear 260/9-10 (2006) 949-956. DOI: https://doi.org/10.1016/j.wear.2005.06.006
- [5] C.T. Kwok, F.T. Cheng, H.C. Man, Microstructure and corrosion behavior of laser surface-melted high-speed steels, Surface and Coatings Technology 202/2 (2007) 336-348. DOI: https://doi.org/10.1016/j.surfcoat.2007.05.085
- [6] M. Bonek, The investigation of microstructures and properties of high speed steel HS6-5-2-5 after laser alloying, Archives of Metallurgy and Materials 59/4 (2014) 1659-1663. DOI: https://doi.org/10.2478/amm-2014-0280
- [7] M. Kulka, D. Panfil, J. Michalski, P. Wach, Modelling of the effects of laser modification of gas-nitrided layer, Archives of Materials Science and Engineering 88/2 (2017) 59-67. DOI: https://doi.org/10.5604/01.3001.0010.8040
- [8] M. Bonek, Laser Surface Alloying, in: Q. Wang, Y. Chung (eds), Encyclopedia of Tribology, Springer, Boston, MA, 2013, 1938-1948. DOI: https://doi.org/10.1007/978-0-387-92897-5_687
- [9] A.A. Shehab, S.A. Nawi, A. AAG Al-Rubaiy, Z. Hammoudi, S.A. Hafedh, M.H. Abass, M.S. Alali, S.D. Ali, CO2 laser spot welding of thin sheets AISI 321 austenitic stainless steel, Archives of Materials Science and Engineering 106/2 (2020) 68-77. DOI: https://doi.org/10.5604/01.3001.0014.6974
- [10] M.M. Abdulridha, A.S.J.A.Z. Jibali, Effect of fibre laser welding parameters on the microstructure and weld geometry of commercially pure titanium, Archives of Materials Science and Engineering 117/1 (2022) 34-41. DOI: https://doi.org/10.5604/01.3001.0016.1395
- [11] E. Jonda, K. Labisz, L.A. Dobrzański, Microstructure and properties of the hot work tool steel gradient surface layer obtained using laser alloying with tungsten carbide ceramic powder, Archives of Materials Science and Engineering 78/1 (2016) 37-44. DOI: https://doi.org/10.5604/18972764.1226314
- [12] Ł. Szparaga, J. Ratajski, Pareto optimal multi-objective optimization of antiwear TiAlN/TiN/Cr coatings, Advances in Materials Science 14/1 (2014) 56-61. DOI: https://doi.org/10.2478/adms-2014-0001
- [13] K.-D. Bouzakis, G. Maliaris, A. Tsouknidas, FEM supported semi-solid high pressure die casting proces optimization based on rheological properties by isothermal compression tests at thixo temperatures extracted, Computational Materials Science 59 (2012) 133-139. DOI: https://doi.org/10.1016/j.commatsci.2012.03.009
- [14] B. Regener, C. Krempaszky, E. Werner, M. Stockinger, Modelling the micromorphology of heat treated Ti6Al4V forgings by means of spatial tessellations feasible for FEM analyses of microscale residua stresses, Computational Materials Science 52/1 (2012) 77-81. DOI: https://doi.org/10.1016/j.commatsci.2011.03.035
- [15] J. Montalvo-Urquizo, P. Bobrov, A. Schmidt, W. Wosnio, Elastic responses of texturized microscale materials using FEM simulations and stochastic material properties, Mechanics of Materials 47 (2012) 1-10. DOI: https://doi.org/10.1016/j.mechmat.2011.11.008
- [16] M. Marvi-Mashhadi, M. Mazinani, A. Rezaee-Bazzaz, FEM modeling of the flow curves and failure modes of dual phase steels with different martensite volume fractions using actual microstructure as the representative volume, Computational Materials Science 65 (2012) 197-202. DOI: https://doi.org/10.1016/j.commatsci.2012.07.032
- [17] S. Zhang, O. El Kerdi, R.A. Khurram, W.G. Habashi, FEM analysis of in-flight ice break-up, Finite Elements in Analysis and Design 57 (2012) 55-66. DOI: https://doi.org/10.1016/j.finel.2012.03.005
- [18] L.A. Dobrzański, A. Śliwa, W. Sitek, Finite element method application for modeling of PVD coatings properties, Proceedings of the 5 th International Surface Engineering Congress, Seattle, Washington, USA, 2006, 26-29.
- [19] L.A. Dobrzański, M. Staszuk, K. Gołombek, A. Śliwa, M. Pancielejko, Structure and properties PVD and CVD coatings deposited onto edges of sintered cutting tools, Archives of Metallurgy and Materials 55/1 (2010) 187-193.
- [20] L.A. Dobrzański, A. Śliwa, W. Kwaśny, Employment of the finite element method for determining stresses in coatings obtained on high-speed steel with the PVD process, Journal of Materials Processing Technology 164-165 (2005) 1192-1196. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.134
- [21] L.A. Dobrzański, W. Kwaśny, B. Dołżańska, A. Śliwa, K. Gołombek, G. Nowak, The computer simulation of internal stresses of tool gradient materials reinforced with the WC-Co, Archives of Materials Science and Engineering 57/1 (2012) 38-44.
- [22] A. Śliwa, J. Mikuła, L.A. Dobrzański, FEM application for modelling of PVD coatings properties, Journal of Achievements in Materials and Manufacturing Engineering 41/1-2 (2010) 164-171.
- [23] T. Tański, K. Labisz, K. Lukaszkowicz, A. Śliwa, K. Gołombek, Characterisation and properties of hybrid coatings deposited onto magnesium alloys, Surface Engineering 30/12 (2014) 927-932. DOI: https://doi.org/10.1179/1743294413Y.0000000194
- [24] Z. Brytan, J. Niagaj, Microstructural Characterization of Lean Duplex Stainless Steel UNS S32101 Welded Joints Using Electron Backscatter Diffraction, Chiang Mai Journal of Science 40/5 (2013) 923-937.
- [25] L.A. Dobrzański, R. Maniara, J. Sokolowski, W. Kasprzak, M. Krupinski, Z. Brytan, Applications of the artificial intelligence methods for modeling of the ACAlSi7Cu alloy crystallization process, Journal of Materials Processing Technology 192-193 (2007) 582-587. DOI: https://doi.org/10.1016/j.jmatprotec.2007.04.022
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-215139e3-be34-49f8-b619-92f8926d8e96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.