PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effective management of key variables in the 3D printing process of pulley-wheel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the study is to systematically compile information on 3D printing and provide an overview of how various parameters and factors in the technological process interrelate, particularly focusing on their impact on the final manufacturing time and filament consumption. This research seeks to enhance efficiency and optimize resource utilization in the realm of 3D printing technology. Design/methodology/approach: The objectives are attained through a comprehensive review of the literature aimed at systematizing, describing, and highlighting important parameters within 3D printing technology. The management of the process is facilitated by specialized software capable of capturing process parameter values and analyzing their impact on both the manufacturing time and filament consumption during 3D printing. This approach leverages software tools to effectively control and optimize the 3D printing process, enabling a detailed examination of how specific parameters influence key out comes such as production time and material usage. Key findings: In the scope of paper is analysis the influence of 3D printing parameters on the final time in the technological process. The parameters are juxtaposed in the form of tables and charts – it allows find significant parameters which mainly decide about manufacturing time of printing elements and material consumption. Research limitations/implications: The limitation of the study is information about the mechanical properties of manufactured elements depends on the parameters of the 3D printing process. Future investigations should be based on the durability of the final 3D-printed object depending on loading conditions. Practical implications: The presented study show the dependency between parameters of 3D printing process, final time manufacturing and consumption of filaments. In practice the consumption of material and correctly select of parameters to 3D printing is economical important due to costs. Originality/value: The paper introduces a novel description of 3D printing factors and provides insightful considerations regarding the final manufacturing time of elements produced through additive technologies. By delving into the intricate relationship between various factors influencing 3D printing processes, this research offers a fresh perspective on optimizing manufacturing time and efficiency.
Rocznik
Tom
Strony
641--666
Opis fizyczny
Bibliogr. 65 poz.
Twórcy
  • Department of Technology and Ecology of Products, Cracow University of Economics
  • Department of Technology and Ecology of Products, Cracow University of Economics
Bibliografia
  • 1. Annibaldi, V., Rotilio, M. (2019). Energy consumption consideration of 3D printing. II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT), 243-248. https://doi.org/10.1109/METROI4.2019.8792856
  • 2. Ansari, A.A., Kamil, M. (2021). Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Materials Today: Proceedings, 45, 5462-5468. https://doi.org/10.1016/j.matpr.2021.02.137
  • 3. Awad, A., Fina, F., Goyanes, A., Gaisford, S., Basit, A.W. (2020). 3D printing: Principles and pharmaceutical applications of selective laser sintering. International Journal of Pharmaceutics, 586, 119594. https://doi.org/10.1016/j.ijpharm.2020.119594
  • 4. BCN3D Stratos (2023). https://www.bcn3d.com/bcn3d-stratos/
  • 5. BCN3D Stratos: 3D printing slicing software - BCN3D Technologies (2024). https://www.bcn3d.com/bcn3d-stratos/
  • 6. Bird, J.O., Chivers, P.J. (1993). Newnes engineering and physical science pocket book. Newnes. http://www.sciencedirect.com:5070/book/9780750616836/newnes-engineering-and-physical-science-pocket-book
  • 7. Cendrero, A.M., Fortunato, G.M., Munoz-Guijosa, J.M., De Maria, C., Díaz Lantada, A. (2021). Benefits of Non-Planar Printing Strategies Towards Eco-Efficient 3D Printing. Sustainability, 13(4), 1599. https://doi.org/10.3390/su13041599
  • 8. Charoo, N.A., Barakh Ali, S.F., Mohamed, E.M., Kuttolamadom, M.A., Ozkan, T., Khan, M.A., Rahman, Z. (2020). Selective laser sintering 3D printing – an overview of the technology and pharmaceutical applications. Drug Development and Industrial Pharmacy, 46(6), 869-877. https://doi.org/10.1080/03639045.2020.1764027
  • 9. Chaudhary, R., Fabbri, P., Leoni, E., Mazzanti, F., Akbari, R., Antonini, C. (2023). Additive manufacturing by digital light processing: a review. Progress in Additive Manufacturing, 8(2), 331-351. https://doi.org/10.1007/s40964-022-00336-0
  • 10. Childs, P.R.N. (2021). Mechanical Design: Theory and Applications. In: Mechanical Design: Theory and Applications. Elsevier. https://doi.org/10.1016/B978-0-12-821102-1.00012-3
  • 11. Ćwikła, G., Grabowik, C., Kalinowski, K., Paprocka, I., Ociepka, P. (2017). The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conference Series: Materials Science and Engineering, 227, 012033. https://doi.org/10.1088/1757-899X/227/1/012033
  • 12. Dalpadulo, E., Petruccioli, A., Gherardini, F., Leali, F. (2022). A Review of Automotive Spare-Part Reconstruction Based on Additive Manufacturing. Journal of Manufacturing and Materials Processing, Vol. 6(6), 133. https://doi.org/10.3390/JMMP6060133
  • 13. Deshmane, S., Kendre, P., Mahajan, H., Jain, S. (2021). Stereolithography 3D printing technology in pharmaceuticals: a review. Drug Development and Industrial Pharmacy, 47(9), 1362-1372. https://doi.org/10.1080/03639045.2021.1994990
  • 14. Dudek, P. (2013). FDM 3D Printing Technology in Manufacturing Composite Elements. Archives of Metallurgy and Materials, 58(4), 1415-1418. https://doi.org/10.2478/amm-2013-0186
  • 15. Elkaseer, A., Chen, K.J., Janhsen, J.C., Refle, O., Hagenmeyer, V., Scholz, S.G. (2022). Material jetting for advanced applications: A state-of-the-art review, gaps and future directions. Additive Manufacturing, 60, 103270. https://doi.org/10.1016/j.addma. 2022.103270
  • 16. Epsilon W27 (2023). https://bcn3d.pl/epsilon-w27/
  • 17. Gibson, I., Rosen, D., Stucker, B. (2015). Directed Energy Deposition Processes. In: Additive Manufacturing Technologies (pp. 245-268). New York: Springer. https://doi.org/10.1007/978-1-4939-2113-3_10
  • 18. Gibson, I., Rosen, D., Stucker, B., Khorasani, M. (2021a). Binder Jetting. In: Additive Manufacturing Technologies (pp. 237-252). Springer International Publishing. https://doi.org/10.1007/978-3-030-56127-7_8
  • 19. Gibson, I., Rosen, D., Stucker, B., Khorasani, M. (2021b). Material Jetting. In: Additive Manufacturing Technologies (pp. 203-235). Springer International Publishing. https://doi.org/10.1007/978-3-030-56127-7_7
  • 20. Gonabadi, H., Yadav, A., Bull, S.J. (2020). The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer. International Journal of Advanced Manufacturing Technology, 111(3-4), 695-709. https://doi.org/10.1007/S00170-020-06138-4
  • 21. Grzelak, K., Telega, J., Torzewski, J. (2023). Podstawy konstrukcji maszyn. WSiP. https://ksiegarnia.pwn.pl/Podstawy-konstrukcji-maszyn-Podrecznik-do-nauki-zawodu-technik-mechanik-technik-pojazdow-samochodowych,68463085,p.html
  • 22. Hopkins, N., Jiang, L., Brooks, H. (2021). Energy consumption of common desktop additive manufacturing technologies. Cleaner Engineering and Technology, 2, 100068. https://doi.org/10.1016/j.clet.2021.100068
  • 23. ideaMaker Library: Find the best ideaMaker profile for your 3D printer (2024). https://www.ideamaker.io/index.html
  • 24. Jared, B.H., Aguilo, M.A., Beghini, L.L., Boyce, B.L., Clark, B.W., Cook, A., Kaehr, B.J., Robbins, J. (2017). Additive manufacturing: Toward holistic design. Scripta Materialia, 135, 141-147. https://doi.org/10.1016/j.scriptamat.2017.02.029
  • 25. Jyothish Kumar, L., Pandey, P.M., Wimpenny, D.I. (2018). 3D printing and additive manufacturing technologies. 3D Printing and Additive Manufacturing Technologies, 1-311. https://doi.org/10.1007/978-981-13-0305-0
  • 26. Kattel, B., Hutchcraft, W.E., Gordon, R.K. (2023). Exploring Infill Patterns on Varying Infill Densities on Dielectric Properties of 3D Printed Slabs. 45th Annual Meeting and Symposium of the Antenna Measurement Techniques Association, AMTA 2023 - Proceedings. https://doi.org/10.23919/AMTA58553.2023.10293640
  • 27. Kreiger, M., Pearce, J.M. (2013). Environmental Life Cycle Analysis of Distributed Three-Dimensional Printing and Conventional Manufacturing of Polymer Products. ACS Sustainable Chemistry & Engineering, 1(12), 1511-1519. https://doi.org/10.1021/ sc400093k
  • 28. Kristiawan, R.B., Imaduddin, F., Ariawan, D., Ubaidillah, Arifin, Z. (2021). A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Engineering, 11(1), 639-649. https://doi.org/10.1515/eng-2021-0063
  • 29. Kuang, X., Zhao, Z., Chen, K., Fang, D., Kang, G., Qi, H.J. (2018). High‐Speed 3D Printing of High‐Performance Thermosetting Polymers via Two‐Stage Curing. Macromolecular Rapid Communications, 39(7). https://doi.org/10.1002/marc.201700809
  • 30. Li, M., Du, W., Elwany, A., Pei, Z., Ma, C. (2020). Metal Binder Jetting Additive Manufacturing: A Literature Review. Journal of Manufacturing Science and Engineering, 142(9). https://doi.org/10.1115/1.4047430
  • 31. Li, Q., Kucukkoc, I., Zhang, D.Z. (2017). Production planning in additive manufacturing and 3D printing. Computers & Operations Research, 83, 157-172. https://doi.org/10.1016/j.cor.2017.01.013
  • 32. Liu, Z., Jiang, Q., Zhang, Y., Li, T., Zhang, H.-C. (2016, June 27). Sustainability of 3D Printing: A Critical Review and Recommendations. Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing. https://doi.org/10.1115/MSEC2016-8618
  • 33. Loflin, W.A., English, J.D., Borders, C., Harris, L.M., Moon, A., Holland, J.N., Kasper, F.K. (2019). Effect of print layer height on the assessment of 3D-printed models. American Journal of Orthodontics and Dentofacial Orthopedics, 156(2), 283-289. https://doi.org/10.1016/j.ajodo.2019.02.013
  • 34. Low, Z.-X., Chua, Y.T., Ray, B.M., Mattia, D., Metcalfe, I.S., Patterson, D.A. (2017). Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. Journal of Membrane Science, 523, 596-613. https://doi.org/10.1016/j.memsci.2016.10.006
  • 35. Lv, N., Li, Y., Qiao, Y. (2022). Generation Algorithm of a Novel Platform Attached Support Structure for FDM-Fused Deposition Modeling. Advances in Materials Science and Engineering. https://doi.org/10.1155/2022/1532924
  • 36. Ma, Q., Rejab, M.R.M., Kumar, A.P., Fu, H., Kumar, N.M., Tang, J. (2021). Effect of infill pattern, density and material type of 3D printed cubic structure under quasi-static loading. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(19), 4254-4272. https://doi.org/10.1177/0954406220971667
  • 37. Magri, A. El, Vaudreuil, S., Mabrouk, K. El, Touhami, M.E. (2020). Printing temperature effects on the structural and mechanical performances of 3D printed Poly-(phenylene sulfide) material. IOP Conference Series: Materials Science and Engineering, 783(1), 012001. https://doi.org/10.1088/1757-899X/783/1/012001
  • 38. Maines, E.M., Porwal, M.K., Ellison, C.J., Reineke, T.M. (2021). Sustainable advances in SLA/DLP 3D printing materials and processes. Green Chemistry, 23(18), 6863-6897. https://doi.org/10.1039/D1GC01489G
  • 39. Manapat, J.Z., Chen, Q., Ye, P., Advincula, R.C. (2017). 3D Printing of Polymer Nanocomposites via Stereolithography. Macromolecular Materials and Engineering, 302(9). https://doi.org/10.1002/mame.201600553
  • 40. Mao, M., He, J., Li, X., Zhang, B., Lei, Q., Liu, Y., Li, D. (2017). The Emerging Frontiers and Applications of High-Resolution 3D Printing. Micromachines, 8(4), 113. https://doi.org/10.3390/mi8040113
  • 41. Mellor, S., Hao, L., Zhang, D. (2014). Additive manufacturing: A framework for implementation. International Journal of Production Economics, 149, 194-201. https://doi.org/10.1016/j.ijpe.2013.07.008
  • 42. Migliore, V. (2023). Design and manufacturing of WAAM parts to consolidate new R+D metal AM capabilities at CIM UPC’s pilot plant. February.
  • 43. Nyika, J., Mwema, F.M., Mahamood, R.M., Akinlabi, E.T., Jen, T. (2022). Advances in 3D printing materials processing-environmental impacts and alleviation measures. Advances in Materials and Processing Technologies, 8(sup3), 1275-1285. https://doi.org/10.1080/ 2374068X.2021.1945311
  • 44. Oropallo, W., Piegl, L.A. (2016). Ten challenges in 3D printing. Engineering with Computers, 32(1), 135-148. https://doi.org/10.1007/s00366-015-0407-0
  • 45. Prakash, K.S., Nancharaih, T., Rao, V.V.S. (2018). Additive Manufacturing Techniques in Manufacturing - An Overview. Materials Today: Proceedings, 5(2), 3873-3882. https://doi.org/10.1016/j.matpr.2017.11.642
  • 46. Rismalia, M., Hidajat, S.C., Permana, I.G.R., Hadisujoto, B., Muslimin, M., Triawan, F. (2019). Infill pattern and density effects on the tensile properties of 3D printed PLA material. Journal of Physics: Conference Series, 1402(4), 044041. https://doi.org/10.1088/1742-6596/1402/4/044041
  • 47. Romanowicz, P.J., Szybiński, B., Wygoda, M. (2022). Static and Fatigue Behaviour of Double-Lap Adhesive Joints and Notched Metal Samples Reinforced by Composite Overlays. Materials, Vol. 15(9), 3233. https://doi.org/10.3390/MA15093233
  • 48. Romanowicz, P.J., Szybiński, B., Wygoda, M. (2024). Fatigue performance of open-hole structural elements reinforced by CFRP overlays. International Journal of Adhesion and Adhesives, 130, 103606. https://doi.org/10.1016/J.IJADHADH.2023.103606
  • 49. Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M., Fino, P. (2019). Application of Directed Energy Deposition-Based Additive Manufacturing in Repair. Applied Sciences, 9(16), 3316. https://doi.org/10.3390/app9163316
  • 50. Sawczuk, P., Kluczyński, J., Sarzyński, B., Szachogłuchowicz, I., Jasik, K., Łuszczek, J., Grzelak, K., Płatek, P., Torzewski, J., Małek, M. (2023). Regeneration of the Damaged Parts with the Use of Metal Additive Manufacturing—Case Study. Materials, Vol. 16(10), 3772. https://doi.org/10.3390/MA16103772
  • 51. Schiavone, N., Verney, V., Askanian, H. (2020). Effect of 3D Printing Temperature Profile on Polymer Materials Behavior. 3D Printing and Additive Manufacturing, 7(6), 311-325. https://doi.org/10.1089/3dp.2020.0175
  • 52. Szmidt, A., Rębosz-Kurdek, A. (2017). New approaches of improving FDM/FFF printing technology. Mechanik, 3, 258-261. https://doi.org/10.17814/mechanik.2017.3.46
  • 53. Tan, W.S., Suwarno, S.R., An, J., Chua, C.K., Fane, A.G., Chong, T.H. (2017). Comparison of solid, liquid and powder forms of 3D printing techniques in membrane spacer fabrication. Journal of Membrane Science, 537, 283-296. https://doi.org/10.1016/j.memsci. 2017.05.037
  • 54. Tetsuka, H., Shin, S.R. (2020). Materials and technical innovations in 3D printing in biomedical applications. Journal of Materials Chemistry B, 8(15), 2930-2950. https://doi.org/10.1039/D0TB00034E
  • 55. Unruh, G. (2018). Circular Economy, 3D Printing, and the Biosphere Rules. California Management Review, 60(3), 95-111. https://doi.org/10.1177/0008125618759684
  • 56. Vanaei, H.R., Raissi, K., Deligant, M., Shirinbayan, M., Fitoussi, J., Khelladi, S., Tcharkhtchi, A. (2020). Toward the understanding of temperature effect on bonding strength, dimensions and geometry of 3D-printed parts. Journal of Materials Science, 55(29), 14677-14689. https://doi.org/10.1007/s10853-020-05057-9
  • 57. Wang, Y., Xu, Z., Wu, D., Bai, J. (2020). Current Status and Prospects of Polymer Powder 3D Printing Technologies. Materials, 13(10), 2406. https://doi.org/10.3390/ma13102406
  • 58. Witko, T. (2019). Biophysical characteristics and cellular studies of polyhydroxyoctanoate (PHO) - biodegradable and biocompatible polymer for biomedical applications. Jagiellonian University.
  • 59. Witko, T., Solarz, D., Feliksiak, K., Haraźna, K., Rajfur, Z., Guzik, M. (2020). Insights into In Vitro Wound Closure on Two Biopolyesters—Polylactide and Polyhydroxyoctanoate. Materials, 13(12), 2793. https://doi.org/10.3390/ma13122793
  • 60. Zhai, Y., Lados, D.A., LaGoy, J.L. (2014). Additive Manufacturing: Making Imagination the Major Limitation. JOM, 66(5), 808-816. https://doi.org/10.1007/s11837-014-0886-2
  • 61. Zhang, H., Wang, J., Liu, Y., Zhang, X., Zhao, Z. (2022). Effect of processing parameters on the printing quality of 3D printed composite cement-based materials. Materials Letters, 308, 131271. https://doi.org/10.1016/j.matlet.2021.131271
  • 62. Zhang, Y., Jarosinski, W., Jung, Y.-G., Zhang, J. (2018). Additive manufacturing processes and equipment. In: Additive Manufacturing (pp. 39-51). Elsevier. https://doi.org/10.1016/B978-0-12-812155-9.00002-5
  • 63. Zhao, Z., Tian, X., Song, X. (2020). Engineering materials with light: recent progress in digital light processing based 3D printing. Journal of Materials Chemistry C, 8(40), 13896-13917. https://doi.org/10.1039/D0TC03548C
  • 64. Zhu, C., Li, T., Mohideen, M.M., Hu, P., Gupta, R., Ramakrishna, S., Liu, Y. (2021). Realization of Circular Economy of 3D Printed Plastics: A Review. Polymers, 13(5), 744. https://doi.org/10.3390/polym13050744
  • 65. Ziaee, M., Crane, N.B. (2019). Binder jetting: A review of process, materials, and methods. Additive Manufacturing, 28, 781-801. https://doi.org/10.1016/j.addma.2019.05.031
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-214c082a-fcd8-4183-9d22-f32191a6bd07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.