PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the aerodynamic drag of pneumatic life rafts as a factor for increasing the reliability of rescue operations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ensuring the safety of ship crews at sea is of the utmost importance. Life rafts are one of the basic components of any seagoing vessel and ensuring their stability is an important component of maritime research. This study concerns the determination of the aerodynamic drag coefficients of pneumatic life rafts in a full range of wind speed and directions. The drag coefficients are based on full-scale experimental studies and numerical calculations (computational fluid dynamics) carried out with Flow-3D software. Two types of life rafts are analysed in the numerical simulations, namely, a non-deformed raft and a raft deformed under the influence of wind pressure at a given flow velocity. The shape of the deformed pneumatic life raft is recreated on the basis of photographic documentation from experimental studies. The results of the numerical calculations are verified on the basis of full-scale flow experiments carried out at the Low Speed Wind Tunnel T-3 Laboratory at the Institute of Aviation in Warsaw. This study shows that there is a dependence of aerodynamic drag on the degree of deformation of the above-water part of the life raft, as well as the angle of the raft setting to the wind. In real water conditions, this angle depends mainly on the anchor point of the drift anchor and therefore should be considered at the design stage, which will directly reduce the wind leeway of the raft.
Rocznik
Tom
Strony
128--136
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Gdynia Maritime University Al. Jana Pawła II 3, 81-345 Gdynia Poland
  • Gdynia Maritime University Al. Jana Pawła II 3, 81-345 Gdynia Poland
  • Gdańsk University of Technology 11/12 Gabriela Narutowicza, 80-233 Gdańsk Poland
Bibliografia
  • 1. Abramowicz-Gerigk T., Burciu Z., Jachowski J., Kornacka E., Wawrzusiszyn M., ‘Experimental and numerical investigation of towing resistance of the innovative pneumatic life raft’, Polish Maritime Research. Vol. 24, p. 40–47, 2017. doi: 10.1515/pomr-2017-0048.
  • 2. Abramowicz-Gerigk T., Burciu Z., Kornacka E., Jachowski J., Stefurak W., ‘Innovative Life raft’, TransNav - The International Journal on Marine Navigation and Safety of Sea Transportation. Vol. 9, 2015. doi: 10.12716/1001.09.04.15.
  • 3. Burciu Z., ‘Method of determining search areas in a rescue operation at sea’ (in Polish), Doctoral Dissertation, Naval Academy, Gdynia, 1997.
  • 4. Burciu Z., ‘Modeling of search areas in terms of the safety of human transport at sea’ (in Polish), Printing House of Warsaw University of Technology, Warsaw, 2003.
  • 5. Burciu Z., ‘Reliability of SAR action in maritime transport’ (in Polish), Printing House of Warsaw University of Technology, Warsaw, 2012.
  • 6. Burciu Z., Grabski Fr., ‘The experimental and theoretical study on the reliability of the life rafts’, Reliability Engineering and System Safety. Vol. 96, 2011. doi: 10.1016/j.ress.2011.06.001.
  • 7. Bramer L., ‘Methods for modeling and forecasting wind characteristics”, Digital Repository, A dissertation submitted to the graduate faculty in partial fulfilment of the requirements for the degree of Doctor of Philosophy, Iowa State University, 2013.
  • 8. Breivik Ø., Allen A., Maisondieu Ch., Olagnon M., ‘Advances in search and rescue at sea’, Ocean Dynamics. Vol. 63, p. 83–88, 2013. doi: 10.1007/s10236-012-0581-1.
  • 9. Breivik Ø., Allen A. A., Maisondieu Ch., Roth J. Ch., ‘Windinduced drift of objects at sea: the leeway field method’, Appl Ocean Res. p. 100–109, 2011. doi: 10.1016/j.apor.2011.01.005.
  • 10. Drzewiecki M., Sulisz W., ‘Generation and Propagation of Nonlinear Waves in a Towing Tank’, Polish Maritime Research. Vol. 26, 2019. doi: 10.2478/pomr-2019-0014.
  • 11. IAMSAR, Manual, International Aeronautical and Maritime Search and Rescue Manual, Volume III, Mobile Facilities, 2005 Edition.
  • 12. Kula K. S., ‘Automatic Control of Ship Motion Conducting Search in Open Waters’, Polish Maritime Research. Vol. 27, 2020. doi: 10.2478/pomr-2020-0076.
  • 13. Małyszko M., ‘Assessment of the Potential Effectiveness of the WIG Craft in Search Action at Sea Using SARMAP Software’, TransNav - the International Journal on Marine Navigation and Safety of Sea Transportation, vol. 13, no. 2, 2019. doi: 10.12716/1001.13.02.23.
  • 14. Marchenko A. V., ‘The floating behaviour of a small body acted upon by a surface wave’ Journal of Applied Mathematics and Mechanics. Vol. 63, no. 3, p. 471–478, 1999. doi: 10.1016/ S0021-8928(99)00059-3.
  • 15. Power J., Simones- Re A., Kennedy E., Kuczora A., Akinturk A., Veitch B., Mackinnon N S., Brown R., Boone J., ‘Life raft performance in wind and waves: an experimental evaluation’, RINA, Royal Institution of Naval Architects International Conference – Design and Operation of Passenger Ships – Papers (2007).
  • 16. Raman-Nair W., Power J., Simones- Re A., ‘Towing dynamics of a life raft and fast rescue craft in a Surface wave’, Ocean Engineering, vol. 35, 2008, doi: 10.1016/j. oceaneng.2008.03.009.
  • 17. Raman-Nair W., Power J., Simones- Re A., Millan J., ‘Numerical Model of Towing Dynamics of a Long Flexible Life Raft in Irregular Waves’, Marine Technology and SNAME News, vol. 46, no. 04, doi: 10.5957/mtsn.2009.46.4.213.
  • 18. Research report, ‘Aerodynamic testing of pneumatic life rafts in the wind tunnel Ø 5m’ (in Polish), Report nr 168/ BA/2000/D Institute of Aviation, Warsaw 2000.
  • 19. FLOW-3D. Available online: https://www.flow3d.com/ (accessed on 15 April 2021).
  • 20. Breivik Ø. & Roang K., Stochastic Forecasting of Drifting Ships and Smaller Objects, http://www.ifremer.fr/sar-drift/ public- repository / pres-leeway.pdf, (accessed 20 May 2021).
  • 21. Heilig A., Tensile Membrane Structures and CFD Wind Load Simulation, https://www.dlubal.com/en/support-andlearning/learning/webinars/001884, (accessed 24 June 2021).
  • 22. ElNokaly A., Chilton J. and Wilson R., Environmental Behaviour of Tensile Membrane Structures, http://eprints. lincoln.ac.uk/id/eprint/8520/1/Egypts%20Paperm%20final. pdf, (accessed 15 May 2021).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2144ad79-dac7-48cd-bead-d6ae328ac44c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.