PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel transient-state analysis approach for distributed temperature sensing based on spontaneous Raman scattering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The light scattering phenomenon in optical fibres has been implemented in several applications for years. Nowadays, commercial distributed sensing systems for temperature measurements - distributed temperature sensing (DTS) - are gaining more attention and are being applied in many fields. The DTS systems are commonly based on optical time domain reflectometry or optical frequency domain reflectometry analysis approaches. This paper presents the simulation model and primary experimental results of a novel approach for data analysis for DTS systems based on the measurement of the backscattered Raman anti-Stokes radiation: the optical transient-state domain reflectometry. The novelty of this approach is the fast and accurate proposed analysis algorithm, as well as the cost-effective, secure and reliable set-up, whose main aspect is the implementation of long, low-power input laser pulses.
Rocznik
Strony
art. no. e150605
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr., fot.
Twórcy
  • Institute of Electronics, Lodz University of Technology, al. Politechniki 10, 93-590 Lodz, Poland
  • Institute of Electronics, Lodz University of Technology, al. Politechniki 10, 93-590 Lodz, Poland
  • Institute of Electronics, Lodz University of Technology, al. Politechniki 10, 93-590 Lodz, Poland
Bibliografia
  • [1] Abramczyk, H. et al. A look into the use of Raman spectroscopy for brain and breast cancer diagnostics: linear and non-linear optics in cancer research as a gateway to tumor cell identity. Expert Rev. Mol. Diagn. 20, 99-115 (2020). https://doi.org/10.1080/14737159.2020.1724092.
  • [2] Brozek-Pluska, B. & Kopec M. Raman microspectroscopy of Hematoporphyrins. Imaging of the noncancerous and the cancerous human breast tissues with photosensitizers. Spectrochim. Acta A 169, 182-191 (2016). https://doi.org/10.1016/j.saa.2016.06.038.
  • [3] Lu, P. et al. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev. 6, 041302 (2019). https://doi.org/10.1063/1.5113955.
  • [4] Palla, M. et al. Click Chemistry Based Biomolecular Conjugation Monitoring Using Surface-Enhanced Raman Spectroscopy Mapping. in 2016 IEEE SENSORS 1-3 (IEEE, 2016). https://doi.org/10.1109/ICSENS.2016.7808595.
  • [5] Hermans, T., Nguyen, F., Robert, T. & Revil, A. Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems. Energies 7, 5083-5118 (2014). https://doi.org/10.3390/en7085083.
  • [6] Onorato, G., Persichetti, G., Grimaldi, I. A., Testa, G. & Bernini, R. Optical fiber fuel level sensor for aeronautical applications. Sens. Actuators A: Phys. 260, 1-9 (2017). https://doi.org/10.1016/j.sna.2017.04.015.
  • [7] Smolen, J. J. & van der Spek, A. Distributed temperature sensing - A DTS primer for oil & gas production. Shell Tech. Report https://www.scribd.com/document/39113402/Shell-DTS-Primer (2003) (Accessed: 17th December 2023).
  • [8] Cho, J. et al. Development and improvement of an intelligent cable monitoring system for underground distribution networks using distributed temperature sensing. Energies 7, 1076-1094 (2014). https://doi.org/10.3390/en7021076.
  • [9] Chen, K., Yue, Y. & Tang, Y. Research on temperature monitoring method of cable on 10 kV railway power transmission lines based on distributed temperature sensor. Energies 14, 3705 (2021). https://doi.org/10.3390/en14123705.
  • [10] Selker, J. S. et al. Distributed fiber-optic temperature sensing for hydrologic systems. Water Resour. Res. 42, W12202 (2006). https://doi.org/10.1029/2006WR005326.
  • [11] Yang, C., Chen, S. & Yang, G. Fiber optical liquid level sensor under cryogenic environment. Sens. Actuators A: Phys. 94, 69-75 (2001). https://doi.org/10.1016/S0924-4247(01)00663-X.
  • [12] Keller, C. A. et al. Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height. Atmos. Meas. Tech. 4, 143-149 (2011). https://doi.org/10.5194/amt-4-143-2011.
  • [13] Masoudi, A. & Newson, T. P. Contributed review: Distributed optical fibre dynamic strain sensing. Rev. Sci. Instrum. 87, 011501 (2016). https://doi.org/10.1063/1.4939482.
  • [14] Kharaz, A. & Jones, B. E. A distributed optical-fibre sensing system for multi-point humidity measurement. Sens. Actuators A: Phys. 47, 491-493 (1995). https://doi.org/10.1016/0924-4247(94)00948-H.
  • [15] Shatarah, I. S. M. & Więcek, B. The Application of NIR Spectrometer for Average Temperature Measurement in Optical Fibers Based on Spontaneous Raman Scattering for DTS Applications. in 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES) 192-196 (2020). https://doi.org/10.23919/MIXDES49814.2020.9155569.
  • [16] Senior, J. M. & Jamro, M. Y. Transmission characteristics of optical fibers. in Optical Fiber Communications: Principles and Practice, 3rd ed 151-153 (Pearson Education Limited, 2009).
  • [17] Yilmaz, G. & Karlik, S. E. A distributed optical fiber sensor for temperature detection in power cables. Sens. Actuators A: Phys. 125, 148-155 (2006). https://doi.org/10.1016/j.sna.2005.06.024.
  • [18] Palmieri, L. & Schenato, L. Distributed optical fiber sensing based on Rayleigh scattering. Open Opt. J. 7, 104-127 (2013). https://doi.org/10.2174/1874328501307010104.
  • [19] Wuilpart, M. et al. Measurement of Magnetic Field Using Rayleigh Backscattering in Optical Fibres. in 2nd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications 1-6 (IEEE, 2011). https://doi.org/10.1109/ANIMMA.2011.6172873.
  • [20] Thomas, P. J. & Hellevang, J. O. A fully distributed fibre optic sensor for relative humidity measurements. Sens. Actuators B: Chem. 247, 284-289 (2017). https://doi.org/10.1016/j.snb.2017.02.027.
  • [21] Shangguan, M. et al. Brillouin optical time domain reflectometry for fast detection of dynamic strain incorporating double-edge technique. Opt. Commun. 398, 95-100 (2017). https://doi.org/10.1016/j.optcom.2017.04.033.
  • [22] Bastianini, F., Corradi, M., Borri, A. & di Tommaso, A. Retrofit and monitoring of an historical building using ‘‘Smart’’ CFRP with embedded fibre optic Brillouin sensors. Constr. Build Mater. 19, 525-535 (2005). https://doi.org/10.1016/j.conbuildmat.2005.01.004.
  • [23] Siwowski, T., Rajchel, M., Sienko, R. & Bednarski, L. Smart Monitoring of the FRB Composite Bridge with Distributed Fibre Optic Sensors. in 9th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE) 916-926 (CICE, 2018).
  • [24] Du, A., Dutta, S., Kurup, P., Yu, T. & Wang, X. A review of railway infrastructure monitoring using fiber optic sensors. Sens. Actuators A: Phys. 303, 111728 (2020). https://doi.org/10.1016/j.sna.2019.111728.
  • [25] Suarez, F., Hausner, M. B., Dozier, J., Selker, J. S. & Tyler S. W. Heat Transfer in the Environment: Development and Use of Fiber-Optic Distributed Temperature Sensing. in Developments in Heat Transfer (ed. Dos Santos Bernardes, M. A.) 611-636 (InTech, 2011).https://doi.org/10.5772/19474.
  • [26] Ukil, A., Braendle, H. & Krippner, P. Distributed temperature sensing: Review of technology and applications. IEEE Sens. J. 12, 885-892 (2012). https://doi.org/10.1109/JSEN.2011.2162060.
  • [27] Farahani, A. & Gogolla, T. Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing. J. Light. Technol. 17, 1379-1391 (1999). https://doi.org/10.1109/50.779159.
  • [28] Xia, T., Guo, J., Li, X. & Mao, X. A Modified Demodulation Algorithm for Fiber-Optic Distributed Temperature Sensing System Based on Raman Scattering. in 2012 Photonics Global Conference (PGC) 1-3 (IEEE, 2012). https://doi.org/10.1109/PGC.2012.6458071.
  • [29] Liu, Y. & Zongjiu, Z. Design of Distributed Fiber Optical Temperature Measurement System Based on Raman Scattering. in 2010 International Symposium on Signals, Systems and Electronics 1-4 (IEEE, 2010). https://doi.org/10.1109/ISSSE.2010.5607025.
  • [30] Kikuchi, I., Naito, T. & Okoshi T. Measurement of Raman scattering in single-mode optical fiber by optical time-domain reflectometry. IEEE J. Quantum Electron. 24, 1973-1975 (1988). https://doi.org/10.1109/3.8529.
  • [31] Liokumovich, B., Ushakov, N. A., Kotov, O. I., Bisyarin, M. A. & Hartog, A. H. Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: Signal model under static fiber conditions. J. Light. Technol. 33, 3660-3671 (2015). https://doi.org/10.1109/JLT.2015.2449085.
  • [32] Geng, J., Xu, J., Li, Y., Wei, G. & Guo, C. The development of the model and arithmetic for the fully distributed fiber optic sensor based on Raman optical-fiber frequency-domain reflectometry (ROFDR). Sens. Actuators A: Phys. 101, 132-136 (2002). https://doi.org/10.1016/S0924–4247(02)00208–X.
  • [33] Lu, P. et al. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev. 6, 041302 (2019). https://doi.org/10.1063/1.5113955.
  • [34] Chen, Y. et al. A Fast high-spatial-resolution Raman distributed temperature sensor. Proc. SPIE 9157, 91575M (2014). https://doi.org/10.1117/12.2058109.
  • [35] Soto, M. A. et al. Raman-based distributed temperature sensor with 1m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding. Opt. Lett. 36, 2557-2559 (2011). https://doi.org/10.1364/OL.36.002557.
  • [36] Stoddart, P. R. et al. Fibre optic distributed temperature sensor with an integrated background correction function. Meas. Sci. Technol. 16, 1299-1304 (2005). https://doi.org/10.1088/0957-0233/16/6/009.
  • [37] Feced, R., Farhadiroushan, M., Handerek, V. A. & Rogers A. J. Advances in high resolution distributed temperature sensing using the time-correlated single photon counting technique. IEE Proc. Optoelectron. 144, 183-188 (1997). https://doi.org/10.1049/ip-opt:19971183.
  • [38] Karamehmedovića, E. & Glombitzab, U. Fiber-optic distributed temperature sensor using incoherent optical frequency domain reflectometry. Proc. SPIE 5363, 107-115 (2004). https://doi.org/10.1117/12.528794.
  • [39] Silva, L. C. B, Pontes, M. J. & Segatto, M. Analysis of Parameters for a distributed temperature sensing based on Raman scattering. J. Microw. Optoelectron. Electromagn. Appl. 16, 259-272 (2017). https://doi.org/10.1590/2179-10742017v16i1886.
  • [40] Cherukupalli, S. & Anders, G. J. Distributed Fiber Optic Sensing and Dynamic Rating of Power Cables. (John Wiley & Sons, Inc., 2020).
  • [41] Mai, T. V., Molnar, J. A. & Tran, L. H. Fiber optic test equipment - evaluation of OTDR dead zones and ORLM return loss. in Proc. AUTOTESTCON 94-98 (2004). https://doi.org/10.1109/AUTEST.2004.1436782.
  • [42] Feced, R., Farhadiroushan, M. & Handerek, V. A. Zero dead-zone OTDR with high-spatial resolution for short haul applications. IEEE Photon. Technol. Lett. 9, 1140-1142 (1997). https://doi.org/10.1109/68.605529.
  • [43] Yuksel, K., Wuilpart, M., Moeyaert, V. & Megret, P. Optical Frequency Domain Reflectometry: A Review. in 11th International Conference on Transparent Optical Networks 1-5 (IEEE, 2009). https://doi.org/10.1109/ICTON.2009.5185111.
  • [44] Arbel, A. & Eyal, A. Dynamic optical frequency domain reflectometry. Opt. Express 22, 8823-8830 (2014). https://doi.org/10.1364/OE.22.008823.
  • [45] Fan, X. Koshikiya, Y., Araki, N. & Ito, F. Field trials of PNC-OFDR in different environments for detecting short beat lengths. IEEE Photonics Technol. Lett. 24, 1288-1291 (2012). https://doi.org/10.1109/LPT.2012.2201935.
  • [46] Martinez-Pinon, F., Alvarez-Chavez, J. A., De la Cruz–May, L. & Martinez-Romero, G. Optimum peak pulse investigation for OTDR instrumentation. Laser Phys. 18, 907-910 (2008). https://doi.org/10.1134/S1054660X08070153.
  • [47] Shatarah, I. S. M. & Więcek, B. Application of software-defined radio for Rayleigh and Raman scattering measurement in optical fibers. Meas. Autom. Monitor. 64, 112-115 (2018). https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-0bfce09f-f3fb-4d16-abfd-3890a593d922/c/Shatarah_application_MAM_4_2018.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2144715d-1c1d-4103-9401-044634617692
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.