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Abstract. Motivated by applications, we consider new operator-theoretic approaches
to conditional mean embedding (CME). Our present results combine a spectral
analysis-based optimization scheme with the use of kernels, stochastic processes, and
constructive learning algorithms. For initially given non-linear data, we consider
optimization-based feature selections. This entails the use of convex sets of kernels
in a construction of optimal feature selection via regression algorithms from learning
models. Thus, with initial inputs of training data (for a suitable learning algorithm),
each choice of a kernel K in turn yields a variety of Hilbert spaces and realizations of
features. A novel aspect of our work is the inclusion of a secondary optimization process
over a specified convex set of positive definite kernels, resulting in the determination
of “optimal” feature representations.
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1. INTRODUCTION

Recently, Conditional Mean Embedding (CME) has gained significant attention in
various applications [4,5,14–16,18,24,25]. One reason for this is that CME stands at the
crossroads of stochastic processes and constructive learning algorithms. In this study,
we focus on a novel utilization of CME in analyzing optimization-based selections of
positive definite kernels and their associated reproducing kernel Hilbert spaces (as
pioneered by Aronszajn [1]). We explore their connections to optimal feature selections
through regression algorithms for specific learning models [19,21,30].
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A function K : X ×X → C is said to be a positive definite (p.d.) kernel if, for all
N ∈ N, all (xi)N

i=1 in X and (ci)N
i=1 in C,

N∑

i,j=1
cicjK (xi, xj) ≥ 0. (1.1)

Every p.d. kernel K is associated with a reproducing kernel Hilbert space (RKHS),
denoted by HK , which is the completion of the linear span of functions

Kx := K (·, x) , x ∈ X (1.2)

with respect to the norm

∥∥∥∥∥
N∑

i=1
ciK (·, xi)

∥∥∥∥∥
HK

=




N∑

i,j=1
cicjK (xi, xj)




1/2

.

Moreover, HK has the reproducing property:

f(x) = ⟨Kx, f⟩HK
, ∀f ∈ HK , ∀x ∈ X. (1.3)

The use of p.d. kernels serves two purposes: Firstly, every p.d. kernel K on X ×X
can be considered as the covariance kernel for a centered Gaussian process indexed
by X, thus leading to associated probability spaces realized in a generalized path space
with σ-algebra and probability measures P. Secondly, selecting a p.d. kernel allows
for factorizations via Hilbert space, enabling a wide range of Hilbert space choices
that facilitate the realization of features based on initial inputs of training data for
a suitable learning algorithm, see e.g., [10].

While earlier approaches fixed a p.d. kernel K in the model, we allow for op-
timization over carefully selected sets of kernels K within a convex set C of p.d.
kernels. Consequently, our “optimal” feature representations depend on a secondary
optimization over kernels K within the specified convex set C.

Our present approach to feature selection is motivated in part by machine learning
and data mining. These applications are typically driven by the challenges posed
by “big data” that needs dimension reduction, which involves transforming data
from a high-dimensional space to a lower-dimensional space, by keeping the most
correlated data and discarding the less correlated data [23, 26, 27]. The linear case
of data transformation encompasses principal component analysis (PCA), while our
focus lies in the nonlinear theories offered by kernel theory. Our objective is to achieve
adaptive selections of nonlinear mappings that maximize the variance in the data,
thereby designing optimal kernels for the given task. Such approaches are particularly
valuable for clustering and the selection of highly correlated components within the
dataset. For further information on kernel learning, we refer to [2, 20,28,29].

The main results of the paper are the following. In Section 3, we present a general
framework for computation of optimal solutions, with Theorem 3.4 and Corollary 3.5
offering explicit solution formulas. In Sections 4 and 5, we formulate the notion
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of solutions in choices of ambient Hilbert spaces, with explicit formulas given in
Theorems 4.4 and 5.9. Associated a priori error bounds are presented in Corollary 4.5.
Finally, Section 6 deals with two particular choices of p.d. kernels. In this context,
explicit optimizers are presented in Theorem 6.6.

The structure of the paper is the following. In Section 2, we provide an introductory
summary of the mathematical concepts that will be essential for our analysis. This
section serves as a foundation for the subsequent sections. Following this, we delve into
the core of the paper by formulating two distinct versions of the general optimization
problem, building upon the concepts introduced in Section 2. These versions involve
optimizing over convex sets of kernels denoted as K. In brief outline, the two variants
are as follows:

(i) In Section 3, we explore an optimization approach that involves applying the
square of the HK -norm to the optimal feature fφ,K , which is obtained from the results
presented in Theorem 2.1. In particular, this uncovers some cases of non-existence of
optimizers.

(ii) In Section 4, we shift our focus to a different criterion of “optimal” and provide
a solution formula based on the findings outlined in Corollary 4.2.

Furthermore, in Section 5, our optimization approach is applied to CME. This in
turn serves to motivate our affirmative optimization results, especially Theorem 4.4,
Corollary 4.5, and Theorem 5.9.

Lastly, in Section 6, we introduce a convex set of p.d. kernels on R. This class
includes the Gaussian and Cauchy kernels (6.3), among others. It also allows for a com-
plete characterization for the existence of kernel mean embeddings (Lemmas 5.3 and
6.1). Additionally, we show in Theorem 6.6 that the spectral measures of the associated
selfadjoint operators admit explicit representations, as compared to Lemmas 3.1 and
4.3, in the framework of our optimizations.

2. OVERVIEW: SPACES AND OPERATORS

In the discussion that follows, we will rely on various results from analysis and
geometry that naturally arise when dealing with p.d. kernels K, feature selections
through factorization, and the use of RKHSs HK for regression and optimization.
While this list of topics is well covered in the literature, the references [7–10,12] are
especially relevant for what we need, and we turn here to some new interdisciplinary
directions which are motivated by recent applications.

In summary, the aim of our paper can be illustrated within the following framework:
Selecting optimal p.d. kernels K for feature analysis, adapted to large training data

φ⇝ K ⇝ f
φ training data

f feature selection

}
depends on choices of p.d. K.
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Specifically, we address the following questions:
(i) What is the optimal feature f in φ⇝ (µ,K)⇝ f? Here, µ is a fixed measure on

X and K : X ×X → C is p.d.
(ii) What is the best choice of K when φ and µ are fixed? How can K be adjusted to

optimize the feature f?
The following diagram shows a workflow for learning training data via choices of p.d.
kernels, which returns an optimal feature.

training data
φ ∈ L2(µ)

''

// feature fφ,K in
HK(RKHS)

choices of K

77

The “best” kernel K is determined based on its ability to select the optimal features
for a given pair (φ, µ). This notion is formalized as follows:

Theorem 2.1. Let Tµ : HK → L2(µ) be a bounded linear operator. Then the solu-
tion to

fφ,K := argmin
{

∥φ− Tµf∥2
L2(µ) + α ∥f∥2

HK
: f ∈ HK

}
(2.1)

is given by
fφ,K = T ∗

µ

(
αI + TµT

∗
µ

)−1
φ. (2.2)

This is a well-known result and can be found in various references such
as [4, 13, 17, 22]. An operator-theoretic proof, where Tµ might be unbounded, is
given in Section 4.

The solution in (2.1)–(2.2) depends directly on the kernel K. Our first criterion
for optimal feature selection corresponds to

max
K

∥∥fφ,K
∥∥2

HK
. (2.3)

To explore this further, one can fix the input φ, and optimize over different choices
of (K,µ), that is,

max
K,µ

∥∥fφ,K
∥∥2

HK
.

Alternatively, one can fix the probability measure µ, and optimize over a convex
set of admissible kernels K:

Definition 2.2. Given a set X with measure µ, a pair (K,µ) is said to be admissible if

HK ∋ K (·, y) Tµ,K−−−−−−−→ K (·, y) ∈ L2(µ), (2.4)

extended by linearity, is well defined and closable.
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Definition 2.3. Fix µ, let

K (µ) = {K : (K,µ) is admissible} , (2.5)
Kb(µ) = {K : (K,µ) is admissible and TK,µ is bounded} . (2.6)

Further, for a fixed K, let

M (K) = {µ : (K,µ) is admissible} .

Lemma 2.4. Suppose (K,µ) is admissible. Then the adjoint operator

T ∗
µ,K : L2(µ) → HK

is specified as follows:

(
T ∗

µ,Kf
)

(·) =
∫
K (·, y) f (y)µ (dy) . (2.7)

Proof. To verify (2.7), we must show that
〈
K (·, x) , T ∗

µ,Kf
〉

HK
= ⟨Tµ,KK (·, x) , f⟩L2(µ) = ⟨K (·, x) , f⟩L2(µ) (2.8)

This holds, since

LHS(2.8) =
∫
K(x, y)f (y)µ (dy) = RHS(2.8),

by the definition of T ∗
µ,K and the reproducing property of HK .

To see that T ∗
µ,K is well defined, we need the following technical lemma.

Lemma 2.5. If µ is fixed, then K ∈ K (µ) if and only if

Fφ :=
∫
K (·, y)φ (y)µ (dy) ∈ HK , ∀φ ∈ L2(µ). (2.9)

Further, (2.9) is equivalent to the following: ∀N ∈ N, ∀ (αi)N
i=1 ⊂ C, ∀ (xi)N

i=1 ⊂ X,
∃Cφ < ∞ with

∣∣∣∣
∑

αi

∫
K (xi, y)φ (y)µ (dy)

∣∣∣∣
2

≤ Cφ

∑

i

∑

j

αiαjK (xi, xj) . (2.10)

Proof. Assume Fφ ∈ HK , for all φ ∈ L2(µ). Then

LHS(2.10) =
∣∣∣
〈∑

αiKxi , Fφ

〉∣∣∣
2

≤ ∥Fφ∥2
HK

∥∥∥
∑

αiKxi

∥∥∥
2

HK

= RHS(2.10))

with Cφ = ∥Fφ∥2
HK

. Here, Kx, x ∈ X, is as in (1.2).
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Conversely, if (2.10) holds, then
∑

αkKxi
7−→

∑
αi

∫
K (y, xi)φ (y)µ (dy)

extends to a unique bounded linear functional lφ on HK , and so by Riesz,

lφ (f) = ⟨ξ, f⟩HK
, ∀f ∈ HK .

for some ξ ∈ HK . Setting f = Kx, then

ξ(x) = lφ (Kx) =
∫
K (y, x)φ (y)µ (dy) = Fφ(x), ∀x ∈ X.

That is, Fφ = ξ ∈ HK .

Lemma 2.6. Suppose K (·, ·) is an integral operator acting on L2 (X,BX , µ), where
µ is σ-finite. Then K is p.d. if and only if

∫

X

∫

X

φ(x)K(x, y)φ (y)µ (dx)µ (dy) ≥ 0, ∀φ ∈ L2(µ). (2.11)

Proof. We first consider the special case where φ =
∑

i αiχBi , {xi}N
i=1 ⊂ X,

{Bi}N
i=1 ⊂ BX . Then (2.11) is equivalent to

∑∑
αiαjµ (Bi)µ (Bj)K (xi, xj) ≥ 0,

see (1.1). The conclusion follows from this and standard approximations, and we omit
the details.

In the subsequent discussion, we focus on specific cases where explicit expressions
can be derived for the optimization problem (2.1)–(2.2). Theorem 2.7 examines the
case when the RKHS HK is separable and there is a given Parseval frame in HK .
On the other hand, Proposition 2.8 is devoted to the case of atomic measures.
Theorem 2.7. If {fi} is a Parseval frame (or an orthonormal basis) in HK , then

K(x, y) =
∑

i

fi(x)fi (y), ∀(x, y) ∈ X ×X; (2.12)

and
(
Tµ,KT

∗
µ,Kφ

)
(x) =

∑

i

(∫
fi (y)φ (y)µ (dy)

)
fi(x)

=
∑

i

⟨φ, fi⟩L2(µ) fi(x). (2.13)

Moreover,

fµ,K := argmin
{

∥φ− Tµ,Kf∥2
L2(µ) + α ∥f∥2

HK

}

=
∑〈

fi, f
µ,K
〉

HK
fi. (2.14)
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Proof. Assume {fi} is a Parseval frame in HK . Consider the functions
Kx (·) = K (·, x), for x ∈ X. Then

Ky(x) = ⟨Kx,Ky⟩HK
=
∑

i

⟨Kx, fi⟩ ⟨fi,Ky⟩ =
∑

i

fi(x)fi (y),

by the reproducing property in HK (see (1.3)). This establishes the factorization
in (2.12), and the assertions (2.13) and (2.14) follow immediately.

In fact, (2.12) holds if and only if {fi} is a Parseval frame in HK . However, we will
omit the details and refer interested readers to the relevant literature, see e.g., [10].

Next, we consider the special case when the measure µ in the pair (K,µ) is atomic.

Proposition 2.8. Let µ = δx0 , then
(
Tδx0

T ∗
δx0
f
)

(·) = K (·, x0) f (x0) ,
(
T ∗

δx0
Tδx0

K (·, x)
)

(z) = K (x0, z)K (x0, x) , ∀ (x, z) ∈ X ×X.

Proof. One checks that
(
T ∗

δx0
f
)

(·) =
∫
K (·, y) f (y)µ (dy) = K (·, x0) f (x0) ,

and so
T ∗

δx0
Tδx0

K (·, x) = K (·, x0)K (x0, x) .

To summarize, considering all admissible pairs (K,µ) and the corresponding
operators Tµ,K and T ∗

µ,K , there are two selfadjoint operators (possibly unbounded):

L2(µ)
Tµ,K T ∗

µ,K−−−−−−−−−−→ L2(µ),

HK

T ∗
µ,K Tµ,K−−−−−−−−−−→ HK .

Our focus lies in the spectral decomposition of these operators. Notably, their spectra
satisfy that

spec
(
Tµ,KT

∗
µ,K

)
∪ {0} = spec

(
T ∗

µ,KTµ,K

)
∪ {0} .

See e.g., [3, 6]. In Section 4, these general results will be used to pro-
vide an operator-theoretic argument for the optimization problem described
in (2.1)–(2.2).

3. OPTIMAL FEATURE SELECTIONS

By feature selection we mean a process for reducing the number of input variables, or
input data in predictive models. This serves to both reduce the computational cost of
modeling, and to improve the performance. It depends on (i) the particular model,
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on (ii) choice of statistical measures, and on (iii) data type of both input and output
variables. Our present focus is machine learning and optimization via quadratic forms
from Section 2, and choice of kernels and associated embeddings into RKHSs. Our
results are Theorem 3.4 and Corollary 3.5 below.

Our analysis in the following discussion builds upon the assumptions stated earlier.
Specifically, we consider a fixed function φ, which represents the “training data”, and
a positive σ-finite measure µ. We assume that φ belongs to L2(µ).

Our approach to feature selection encompasses both regression using a fixed p.d.
kernel K and variations in the choice of p.d. kernels K. Each selection of K leads to a set
of admissible features. However, the key lies in identifying a “good” choice of K that
produces optimal feature functions fφ,K , representing distinct and informative features.
This distinction is captured by fφ,K with large ∥fφ,K∥2

HK
, indicating a significant

variance. Optimal choices of K typically yield successful discrimination by highlighting
relevant features that emerge from the specific training data φ. It is important to note
that the training data φ remains fixed, while the choice of K determines the features
entailed by ∥fφ,K∥2

HK
.

First, we associate this “variance” ∥fφ,K∥2
HK

with the spectral measure of the
operator Tµ,KT

∗
µ,K .

Lemma 3.1. Given a fixed measure µ and a p.d. kernel K ∈ K (µ), let fφ,K be as
specified in (2.2). Then

∥∥fφ,K
∥∥2

HK
=
〈
φ, Tµ,KT

∗
µ,K

(
α+ Tµ,KT

∗
µ,K

)−2
φ
〉

L2(µ)

=
∥∥∥
(
Tµ,KT

∗
µ,K

)1/2 (
α+ Tµ,KT

∗
µ,K

)−1
φ
∥∥∥

2

L2(µ)

=
∫

x

(α+ x)2
∥∥Qµ,K (dx)φ

∥∥2
L2(µ) ,

(3.1)

where Qµ,K (·) is the spectral measure of the operator Tµ,KT
∗
µ,K , i.e.,

Tµ,KT
∗
µ,K =

∞∫

0

xQµ,K (dx) .

Proof. Let T := Tµ,K . Note that

TT ∗ (α+ TT ∗)−2 : L2(µ) → L2(µ)

is a bounded operator. We have
〈
T ∗ (α+ TT ∗)−1

φ, T ∗ (α+ TT ∗)−1
φ
〉

HK

=
〈

(α+ TT ∗)−1
φ, TT ∗ (α+ TT ∗)−1

φ
〉

L2(µ)

=
〈
φ, TT ∗ (α+ TT ∗)−2

φ
〉

L2(µ)
.
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Remark 3.2. Note that, if
∥∥Tµ,KT

∗
µ,K

∥∥ < α, then the function K 7−→
∥∥fφ,K

∥∥2
HKis monotone relative to the order of kernels:

K ≪ K ′ ⇐⇒
∫
φKφdµ ≤

∫
φK ′φdµ.

In that case, we need only optimize with respect to the spectral measure associated
with the kernel K ∈ K (µ), with µ fixed.

Example 3.3. If µ = δx0 as in Proposition 2.8, then
(
Tδx0

T ∗
δx0
ψ
)

(·) = K (·, x0)ψ (x0) ∈ L2 (X, δx0) .

Moreover, 〈
φ, Tδx0

T ∗
δx0
ψ
〉

L2(δx0)
= K (x0, x0)φ (x0)ψ (x0) .

Similarly, for atomic measures µ =
∑

i αiδxi
, we have

〈
φ, TµT

∗
µψ
〉

L2(µ) =
∑

i

∑

j

αiαjK (xi, xj)φ (xi)ψ (xj)

for all φ,ψ ∈ L2(µ).

Next, we consider a positive measure µ as in 2.2. By fixing an orthonormal basis
(ONB) in the corresponding L2(µ), we then arrive at a convex set Cµ of Mercer
kernels K. This set Cµ is specified in (3.2). Consequently, these p.d. kernels K and the
corresponding RKHSs are determined by the spectral data outlined in (3.4). As a result,
the optimal feature vector can be obtained by solving the convex optimization problem
for K in Cµ.

Further note that the spectral data used in the case (of Mercer kernels) is a special
case of the general structure presented in Lemma 3.1. Indeed, the reader can verify
that the optimization algorithm presented below for the case of Mercer kernels extends
to more general cases of convex sets of p.d. kernels as per Lemma 3.1.

Theorem 3.4. Fix µ, and let K ∈ K (µ). Let {ei}i∈N be an ONB in L2(µ), and
consider the Mercer kernel

K(x, y) =
∑

λiei(x)ei (y) (3.2)

with λi > 0, and
∑
λi = 1. In this case,

⟨φ, TKT
∗
Kψ⟩L2(µ) =

∑
λi ⟨φ, ei⟩L2(µ) ⟨ei, ψ⟩L2(µ) .

Let fK be the optimal solution as in (2.2). Then,

∥∥fK
∥∥2

HK
=
∑ λi

(α+ λi)2 |⟨φ, ei⟩|2 . (3.3)
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Moreover, consider the optimization problem:




max
(λi)

∑ λi

(α+ λi)2 ci,

∑
λi = 1, λi > 0,

∑
ci = ∥φ∥2

L2(µ) , ci := |⟨ei, φ⟩|2 ≥ 0.

(3.4)

The solution (λmax
i ) satisfies that

λmax
i

(α+ λmax
i )2 = ξci (3.5)

for some constant ξ ∈ R+.

Proof. The condition in (3.5) follows from an application of the Cauchy–Schwarz
inequality.

To show that the solution (λmax
i ) to (3.5) in fact represents the solution to the

optimization problem (3.4), we observe that one term in the l2 inner product is
fixed, so the maximum in (3.4) is attained when quality holds in the corresponding
Cauchy–Schwarz inequality.

Further, note that, for every fixed value of the index i, (3.5) is a quadratic equation
(see also Figure 1), and the optimal spectral distribution (λmax

i ) is explicit. The form
of the optimal p.d. kernel K then follows by substitution of (λmax

i ) into (3.2).

Fig. 1. Spectral distribution in (3.5)
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Corollary 3.5. Consider the finite-dimensional case, i.e., µ is atomic, where
K =

∑N
i=1 λiei(x)ei (y), with {ei}N

i=1 an ONB in L2(µ). Then the optimization problem




max
(λi)

N∑

i=1

λi

(α+ λi)2 ci,

N∑

i=1
λi = 1, λi > 0,

N∑

i=1
ci = ∥φ∥2

L2(µ) , ci := |⟨ei, φ⟩|2 ≥ 0

has solution (λmax
i ) determined by

(α− λmax
i ) ci = AN (α+ λmax

i )3
.

See Figure 2.

Fig. 2. The solution (λmax
i ) determined by the intersection of two curves

Moreover, we have

∥∥fK
N

∥∥2
HK

=
N∑

i=1

λmax
i

(α+ λmax
i )2 ci =

N∑

i=1

A
2/3
N λmax

i c
1/3
i

(α− λmax
i )2/3 . (3.6)

Proof. Let L be the Lagrangian, where

L =
N∑

i=1

λi

(α+ λi)2 ci −AN

(
N∑

i=1
λi − 1

)
.

Then,
∂L

∂λi
= α2 − λ2

i

(α+ λi)4 ci −AN = 0

if and only if
(α− λi) ci = AN (α+ λi)3

.
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This yields

(α+ λi)2 = (α− λi)2/3
c

2/3
i

A
2/3
N

so that
N∑

i=1

λmax
i

(α+ λmax
i )2 ci =

N∑

i=1

λmax
i

(α− λmax
i )2/3

c
2/3
i

A
2/3
N ci =

N∑

i=1

λmax
i

(α− λmax
i )2/3A

2/3
N c

1/3
i

which is (3.6).

4. OPTIMIZATION IN AN AMBIENT HILBERT SPACE

We continue our analysis within the established framework, where the input consists
of a fixed measure µ, and a function φ from L2(µ) representing the training data.
Our focus is on optimal choices for p.d. kernels K that maximize the effectiveness of
K-features in the kernel learning process, as discussed in Section 2.

In (2.3), we provide a precise selection criterion for optimal kernels K, along with
a solution outlined in Theorem 3.4. In this section, we introduce an alternative criterion
(4.5)–(4.6) and derive a solution in Theorem 4.4.

In both cases, when an ONB in L2(µ) is chosen, we study the corresponding convex
sets of Mercer kernels K as specified in (3.2) and (4.9). Each kernel K is determined
by a spectral distribution {λi}. The optimization objective is based on (2.2), which
incorporates a penalty term in the form of weighted HK-norm squared, with an
assigned parameter α, as shown in (2.1). As a result, we obtain an optimal feature
vector fK for every K.

We further examine theK-variance, measured with the use of the HK norm-squared.
Two such variance measures are considered, (3.3) and (4.10). In the first case, we
observe a singularity blowup when the values of λi approach α. In the second case,
the dependence on K takes a different form; we show that then the K-variance, as
expressed in (4.10), is monotone, as specified in detail in Theorem 4.4 and Corollary 4.5
(spectral a priori error-bounds).

Recall that in our general setup for regression optimization, we have arranged that
the training data may be represented via an operator T in a Hilbert space. Below we
first recall some basic facts from operator theory.

Let T : H1 → H2 be a closed, densely defined linear operator between Hilbert
spaces. On H1 × H2, define the inner product

〈[
u1
u1

]
,

[
v1
v2

]〉

H1×H2

:= α ⟨u1, v1⟩H1
+ ⟨u2, v2⟩H2

(4.1)

where α is a positive constant.
Define W : H1 → H1 × H2 by

W (u) =
[
u
Tu

]
, u ∈ dom (T ) .
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This operator is 1–1 and has a bounded inverse on its range, ran (W ).

Lemma 4.1. The projection from H1 × H2 onto ran (W ) is given by
[
α (αI1 + T ∗T )−1

T ∗ (αI2 + TT ∗)−1

αT (αI1 + T ∗T )−1
TT ∗ (αI2 + TT ∗)−1

]
. (4.2)

Proof. When α = 1, the block matrix in (4.2) represents the projection from the direct
sum H1 ⊕ H2 onto the graph of the operator T . This result can be found in e.g.,
[11, Corollary 1.55]. The case of α ̸= 1 is a straightforward variation of the argument
presented therein.

Corollary 4.2. Let T : H1 → H2 be as above. Then, for all v ∈ H2, we have

u∗ = argmin
{
α ∥u∥2

H1
+ ∥Tu− v∥2

H2
: u ∈ H1

}

= argmin
{

∥Wu− (0, v)∥2
H1×H2

: u ∈ H1

}

= T ∗ (αI2 + TT ∗)−1
v.

(4.3)

Proof. By the definition of W , we have

α ∥u∥2
H1

+ ∥Tu− v∥2
H2

=
∥∥∥∥Wu−

[
0
v

]∥∥∥∥
2

H1×H2

.

By Lemma 4.1, the projection of
[
0
v

]
onto ran (W ) is given by the vector

[
T ∗ (αI2 + TT ∗)−1

v

TT ∗ (αI2 + TT ∗)−1
v

]
,

which is equal to

Wu∗ =
[
u∗

Tu∗

]
,

for a unique u∗ in H1. This gives (4.3).

Now, return to optimal feature selections. Fix µ, and consider kernels K ∈ K (µ),
see Definition 2.3. Define WK : HK → HK × L2(µ) by

WKh =
[

h
TK,µh

]
.

The inner product on HK × L2(µ) is as in (4.1), with parameter α > 0.
Fix φ ∈ L2(µ), then we get a unique fφ,K ∈ HK , such that WKf

φ,K is the
projection of [

0
φ

]
∈ HK × L2(µ) onto ran (WK) .
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That is,
fφ,K = T ∗

K,µ

(
αIL2 + TK,µT

∗
K,µ

)−1
φ (4.4)

by Corollary 4.2.
This motivates the optimization criterion:

max
K∈K (µ)

{∥∥WKf
φ,K
∥∥2

HK×L2(µ)

}
(4.5)

⇕
max

K∈K (µ)

{
α
∥∥fφ,K

∥∥2
HK

+
∥∥TK,µf

φ,K
∥∥2

L2(µ)

}
(4.6)

Below is a modification of Lemma 3.1.
Lemma 4.3. With µ,K fixed, K ∈ K (µ), let fφ,K be as specified in (4.4). Then

∥∥WKf
φ,K
∥∥2

HK×L2(µ) =
∫

x

α+ x

∥∥Qµ,K (dx)φ
∥∥2

L2(µ) , (4.7)

where QK,µ (dx) is the spectral measure of the operator TK,µT
∗
K,µ. Especially,

∥∥WKf
φ,K
∥∥2

HK×L2(µ) ≤ ∥φ∥2
L2(µ) . (4.8)

Proof. Let T := TK,µ, then
∥∥WKf

φ,K
∥∥2

HK ×L2(µ) = α
∥∥fφ,K

∥∥2
HK

+
∥∥Tfφ,K

∥∥2
L2(µ)

= α
∥∥∥T ∗ (α+ TT ∗)−1

φ
∥∥∥

2

HK

+
∥∥∥(α+ TT ∗)−1

TT ∗φ
∥∥∥

2

L2(µ)

=
∫ (

αx

(α+ x)2 + x2

(α+ x)2

)
∥∥Qµ,K (dx)φ

∥∥2
L2(µ)

=
∫

x

α+ x

∥∥Qµ,K (dx)φ
∥∥2

L2(µ) .

Finally, (4.8) follows from the fact that WKf
φ,K is the projection of

[
0
φ

]
∈ HK ×L2(µ)

onto ran (W ).

Next, we state an analog of Theorem 3.4.
Theorem 4.4. Fix µ, and let K ∈ K (µ). Let {ei}i∈N be an ONB in L2(µ), and
consider the p.d. kernel

K(x, y) =
∑

i∈N
λiei(x)ei (y) (4.9)

with λi > 0. Let fφ,K be the optimal solution as in (4.4). Then,
∥∥WKf

φ,K
∥∥2

HK×L2(µ) =
∑ λi

α+ λi
|⟨φ, ei⟩|2 . (4.10)

Proof. See the proof of Theorem 3.4.
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Corollary 4.5. Let WK and fφ,K be as in Theorem 4.4, and assume K is bounded.
Let λ− = inf {λi}, λ+ = sup {λi}.

(i) The following hold:

λ−
α+ λ−

∥φ∥2
L2(µ) ≤

∥∥WKf
φ,K
∥∥2

HK ×L2(µ) ≤ λ+
α+ λ+

∥φ∥2
L2(µ) . (4.11)

(ii) Equivalently, the approximation error satisfies

α

α+ λ+
∥φ∥2

L2(µ) ≤ err ≤ α

α+ λ−
∥φ∥2

L2(µ) . (4.12)

(iii) By increasing λ−, WKf
φ,K approximates (0, φ) in HK × L2(µ) arbitrarily well.

Proof. Notice that the function f(x) = x
α+x in (4.7) is strictly increasing in (0,∞), so

that (4.11) follows from (4.10). The other assertions are immediate.

Remark 4.6. The difference between the two feature selection methods in Sections 3
and 4 is as follows.

Fix a measure µ, and consider K ∈ K (µ), i.e., all admissible kernels. Let HK be
the associated RKHS. In both cases, for a given φ ∈ L2(µ), the best feature vector in
HK is the same

fK,φ = T ∗
K,µ

(
α+ TK,µT

∗
K,µ

)−1
φ.

See (2.2) and (4.4).
However, the criteria for optimization over kernels K are different:

Section 3: max
K∈K (µ)

{∥∥fK,φ
∥∥2

HK

}
, (4.13)

Section 4: max
K∈K (µ)

{
α
∥∥fK,φ

∥∥2
HK

+
∥∥TK,µf

K,φ
∥∥2

L2

}
. (4.14)

As discussed at the beginning of (4), the vector
(
fK,φ, TK,µf

K,φ
)

is the projection of (0, φ) in HK × L2 onto the graph of TK,µ. Thus, (4.14) is the
norm squared of the projected vector and the corresponding optimization makes use
of Hilbert space geometry.

5. APPLICATIONS TO CME

A key feature in conditional mean embedding (CME) involves the analysis of systems
of random variables, and conditional distributions, which take values in suitable
choices of RKHSs, often in infinite dimensions. Hence, conditional expectations, and
relative transition operators, will entail choices of p.d. kernels, typically one for each
random variable under consideration. The implementation of kernel embedding of
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distributions (also called the kernel mean or mean map) yields nonparametric outcomes
in which a probability distribution is represented as an element of an RKHS. In diverse
applications, the use of CME has served as useful tools in for example, problems
of sequentially optimizing conditional expectations for objective functions. In such
settings, both the conditional distribution and the objective function, while fixed, are
assumed to be unknown.

The setting for CME is as follows:
Let X,Y be random variables on a probability space (Ω,C ,P), taking values in

sets A,B, respectively, and has joint measure

µ (S1 × S1) = P
(
X−1 (S1) ∩ Y −1 (S2)

)

for all S1 × S2 ∈ BA × BB , the product σ-algebra.
Denote by µX , µY the corresponding marginal measures, and let µY |x be the

conditional measure defined as

µY |x (S) = P
(
Y −1 (S) | X = x

)

for all S ∈ BB and x ∈ A.
Assume further that K,L are given p.d. kernels on A, B with RKHSs HK , HL,

respectively.

Lemma 5.1. For every x ∈ A, set

π(x) := E [L (·, Y ) | X = x] =
∫
L (·, y) dµY |x (y) (5.1)

Then, for all f ∈ HL, it holds that

⟨π(x), f⟩HL
=
∫

⟨L (·, y) , f⟩ dµY |x (y) = E [f (Y ) | X = x] .

Proof. The integral on the RHS in formula (5.1) is an extension of (2.7) from
Lemma 2.4. Moreover, the proof of the lemma follows the ideas in Section 2.

Definition 5.2. The map x 7→ π(x) in (5.1) is referred to as the kernel mean
embedding (KME) of the conditional expectation E [ · | X = x], also known as the
conditional mean embedding (CME).

We will provide a brief overview of the existence of KME as follows:
Consider a measurable space (X,BX), where BX is a given σ-algebra of subsets

of X. We focus on measures µ on (X,BX), with particular emphasis on the case where
µ is a probability measure, i.e., µ(x) = 1. Let K be a p.d. kernel on X ×X and let
HK be the associated RKHS.
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Lemma 5.3. Assuming that
∫

X

∫

X

µ (dx)K(x, y)µ (dy) < ∞, (5.2)

then the following function

TK(µ) (·) :=
∫
K (·, y)µ (dy) (5.3)

belongs to HK , and

∥TK(µ)∥2
HK

=
∫

X

∫

X

µ (dx)K(x, y)µ (dy) . (5.4)

Proof. We refer to the cited references for details.

Corollary 5.4. Let W : Ω → X be a random variable on a given probability space
(Ω,F ,P), and let µ = µW = P ◦ W−1. Assume K is a p.d. kernel on X × X with
the property (5.2). Then, we have the representation

⟨f, TK (µW )⟩HK
= E (f ◦W )

for all f ∈ HK .

Now we return to our analysis of CME.

Lemma 5.5. As in Lemma 5.1, consider π(x) for x ∈ A, as per the definition (5.1)
in Lemma 5.1. Then

(i) π(x) ∈ HL if and only if

E [L (Y, Y ) | X = x] := µY |xLµY |x < ∞, (5.5)

where
µY |xLµY |x =

∫∫
L (y1, y2) dµY |x (y1) dµY |x (y2) .

(ii) π ∈ L2 (A,µX) ⊗ HL if and only if

E [K (Y, Y )] =
∫ (

µY |xLµY |x
)
dµX(x) < ∞.

In that case, setting π̃ (f) (x) := ⟨π(x), f⟩HL
, then

∫
∥π̃ (f)∥2

HK
dµX ≤ E [K (Y, Y )] ∥f∥2

HL

for all f ∈ HL.
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Proof. Consider the filter of finite measurable partitions P (B) of the measurable
space (B,B), i.e., {Ai}N

i=1 for some N < ∞, with Ai ∈ B, Ai ∩Aj = ∅ if i ̸= j, and⋃
i Ai = B, then

N∑

i=1
L (·, yi)µY |x (Ai) ∈ HK (5.6)

with
∥∥∥∥
∑N

i=1
L (·, yi)µY |x (Ai)

∥∥∥∥
2

HK

=
∑

i

∑
j
µY |x (Ai)L (yi, yj)µY |x (Aj) . (5.7)

Since L is assumed measurable, the right-hand side of (5.7) has a limit, as we pass
to the limit of the filter of all measurable partitions P (B), see (5.6), and the limit
is well defined and finite if and only if (5.5) holds. This follows from the following
computation:

∫∫
µY |x (dy1)L (y1, y2)µY |x (dy2) = E [L (Y, Y ) | X = x] .

But since we have “=” in the identity (5.7) for all finite partitions, it follows that (5.5)
holds if and only if the integral on the right-hand side in (5.1) is convergent with its
values in HL.

The second part of the lemma is immediate.

Remark 5.6. The setting of the lemma is a fixed a p.d. kernel L and a measure space
(B,B). We have L defined on B×B and assumed measurable w.r.t. the corresponding
product σ-algebra. The key idea behind the justification of the RKHS HL valued
integral π(x) in (5.1) is a rigorous justification of a limit of an approximation by finite
sums in HL, and the limit with respect to the RKHS norm in HL. This is doable
as per our discussion, but the limit will be indexed by a filter of partitions of the
measure space (B,B). And the limit is with respect to refinement within the filter of
partitions, where refinement defined by recursive subdivision, i.e., subdivisions of one
partition are creating a finer partition. Note that the reasoning involves the same kind
of limit which is used in the justification of general Ito isometries, and Ito integrals for
Gaussian processes.

Question 5.7. Assume π ∈ L2 (A,µX) ⊗ HL. What is the best approximation to
choice of CME µ from an HL-valued RKHS?

One option in the literature is to approximate π from HK ⊗ HL.
More generally, one may start from an B (HL)-valued p.d. kernel
S : A×A → B (HL), i.e.,

N∑

i,j=1
⟨ui, S (xi, xj)uj⟩HL

≥ 0 (5.8)

∀ (xi)N
i=1 ⊂ A, ∀ (ui)N

i=1 ⊂ HL, and ∀N ∈ N.
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Let HS be the Hilbert completion of the set span {S (·, x)u : x ∈ A, u ∈ HL} with
respect to the inner product

〈∑
S (·, xi)ui,

∑
S (·, xj) vj

〉
HS

:=
∑

i,j

⟨ui, S (xi, xj) vj⟩HL
.

Then HS is an RKHS with the following reproducing property:
For all F ∈ HS , x ∈ A and u ∈ HL, we have

⟨u, F (x)⟩HL
= ⟨S (·, x)u, F ⟩HL

.

Remark 5.8. In the special case HS = HK ⊗ HL, we have

S(x, y) = K(x, y)IHL
,

where K is the scalar valued p.d. kernel of HK , and IHL
denotes the identity operator

on HL.
Theorem 5.9. Assume S is compatible with the marginal distribution of X, then
we have

fπ,S := argmin
{

∥TSf − π∥2
L2(A)⊗HL

+ α ∥f∥2
HS

}
(5.9)

= T ∗
S (α+ TST

∗
S)−1

π. (5.10)

Then, we may apply the methods from Section 3 to the problem:

max
S

∥∥fπ,S
∥∥2

HS
.

Proof. Illustrating the versatility of Hilbert space operators, the reader will be able to
fill in the argument for this formula (5.10), and its implications, following the general
framework presented in Sections 2 and 3 above.

6. A NEW CONVEX SET OF P.D. KERNELS

In this section, we introduce a convex set of positive definite kernels on R, denoted
as G1, also referred to as stationary kernels. These kernels can be represented as
Kg(x, y) = g (x− y), where g is the Fourier transform of a probability measure µ on R.

Specifically, given Kg along with its associated RKHS HKg
, and a Borel measure

ρ on R, Lemma 6.1 shows that the existence of kernel mean embedding (KME),
as discussed in Lemma 5.3, is completely characterized by the Fourier transform
of the measure ρ. Furthermore, under suitable conditions, the integral operator
Tλ : HKg

→ L2 (dλ), where λ denotes Lebesgue measure, is densely defined and
closeable. In Theorem 6.6, we show that the spectral measures of the selfadjoint
operators TλT

∗
λ have explicit representations, in comparison to Lemmas 3.1 and 4.3.

Importantly, this class of kernels includes highly popular choices such as the
Gaussian and Cauchy kernels, as illustrated in Example 6.3. These kernels are widely
used in machine learning, statistical modeling, and other related areas.
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To begin, we establish the necessary notations and definitions. Let M(R) be the
set of all Borel measures on R, and M1(R) be the subset of probability measures.
For all ρ ∈ M(R), let

ρ̂(ξ) =
∫

R

eiξxdρ(x)

denote the Fourier transform.
Consider the following convex set of stationary kernels

G1 =
{
R × R

Kg−−−→ C : Kg(x, y) = g (x− y) , g = µ̂, µ ∈ M1(R)
}
.

Lemma 6.1. Fix Kg ∈ G1, and let HKg
be the corresponding RKHS. Then,

for all ρ ∈ M(R),

g ∗ dρ :=
∫

R

Kg (·, y) dρ (y) ∈ HKg

⇕∫

R

|ρ̂(ξ)|2 dµ(ξ) < ∞.

Proof. Assume g ∗ dρ ∈ HKg , then

∥g ∗ dρ∥2
HKg

=
∫∫

⟨Kg (·, y) ,Kg (·, z)⟩HKg
dρ (y) dρ (z)

=
∫∫

g (y − z) dρ (y) dρ (z)

=
∫ (∫∫

eiξ(y−z)dρ (y) dρ (z)
)
dµ(ξ)

=
∫

|ρ̂(ξ)|2 dµ(ξ) < ∞.

Conversely, suppose C :=
∫

|ρ̂(ξ)|2 dµ(ξ) < ∞. Then, for all
∑
ckKg (·, xk), we have

∑
ckKg (·, xk) 7−→

∣∣∣
∑

ck (g ∗ dρ) (xk)
∣∣∣
2

=
∣∣∣∣
∑

ck

∫ ∫
eiξ(xk−y)dρ (y) dµ(ξ)

∣∣∣∣
2

≤
∫ ∣∣∣
∑

cke
iξxk

∣∣∣ |ρ̂(ξ)| dµ(ξ)2

≤
∫ ∣∣∣
∑

cke
iξxk

∣∣∣
2
dµ(ξ)

∫
|ρ̂(ξ)|2 dµ(ξ)

= C ·
∑

k

∑

l

ckclKg (xk, xl) .

It follows that g ∗ dρ ∈ HKg
by density and Riesz’s theorem.
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Fix Kg ∈ G1, and let HKg
be the RKHS. Let dλ denote the Lebesgue measure

on R. Suppose
{
φ ∈ L2 (dλ) : φ̂ ∈ L2(µ)

}
is dense in L2 (dλ). Then, the operator

Tλ : HKg
→ L2 (dλ) , Tλ

(∑

i

ciKg (·, xi)
)

=
∑

i

ciKg (·, xi) (6.1)

is densely defined and closable, and its adjoint is given by

T ∗
λ : L2 (dλ) → HKg

, T ∗
λ (φ) = g ∗ φ, ∀φ ∈ dom (T ∗

λ ) (6.2)

where dom (T ∗
λ ) =

{
φ ∈ L2 (dλ) : φ̂ ∈ L2(µ)

}
.

Corollary 6.2. For all φ ∈ dom (T ∗
λ ), we have

∥T ∗
λφ∥2

HKg
=
∫

|φ̂(ξ)|2 dµ(ξ).

Proof. This follows from Lemma 6.1 by setting dρ = gdλ, and φ̂ is the L2-Fourier
transform of φ.

Example 6.3. Consider the following two p.d. kernels on R:

K1(x, y) = e−|x−y|, K2(x, y) = e− 1
2 (x−y)2

. (6.3)

Note that

g1(x) = e−|x| =
∫
eiξxdµ1(ξ), dµ1(ξ) = 1

π

1
1 + ξ2 dξ,

g2(x) = e− 1
2 x2

=
∫
eiξxdµ2(ξ), dµ2(ξ) = 1√

2π
e− 1

2 ξ2
dξ.

Moreover, for K1, if φ ∈ L2(R), then

∥g1 ∗ φ∥2
HK1

=
∫

R

|φ̂(ξ)|2 dξ
1 + ξ2 =

〈
φ,
(

1 − (d/dx)2
)−1

φ

〉

L2(R)
.

In other words, the RKHS is the RKHS from the Green’s function for 1 − (d/dx)2,
or 1 − ∆ in Rn, n > 1.

Given Kg ∈ G1, the convolution φ 7→ g ∗ φ ∈ HKg
may be extended to measures

or distributions.
Lemma 6.4. Let Kg ∈ G1, and HKg

be the corresponding RKHS. Then,

g (x− ·) = g ∗ δx ∈ HKg

and
g ∗ δ′

x ∈ HKg ⇐⇒
∫

|ξ|2µ (dξ) < ∞. (6.4)

Note (6.4) is satisfied for K2 but not for K1 in Example 6.3.
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Proof. Using g ∗ δx = g (x− ·), we have g ∗ δx ∈ HKg
and

∥g (x− ·)∥2
HKg

= ⟨g (x− ·) , g (x− ·)⟩HKg
= g (x− x) = g(0) = 1.

Equivalently, δx ↔ δ̂x(ξ) = eiξx, ξ ∈ R, and
∫

|δ̂x|2dµ =
∫ ∣∣eixξ

∣∣2 µ (dξ) = µ(R) = g(0) = 1.

Similarly, δ′
x ↔ δ̂′

x(ξ) = iξeixξ. Thus g ∗ δ′
x ∈ HKg if and only if

∫
|ξ|2µ (dξ) < ∞.

Remark 6.5. Given Kg(x, y) = g (x− y), where g(x) =
∫
eiξxµ (dξ), and µ is a finite

positive Borel measure on R, the reproducing property of HKg below may be verified
using Fourier-inversion:

⟨g (x− ·) , φ ∗ g⟩HK
= (φ ∗ g) (x), ∀x ∈ R.

Proof. Indeed, we have

⟨g (x− ·) , φ ∗ g⟩HK
=
∫
eiξxφ̂(ξ)µ (dξ)

=
∫

R

eiξxφ̂ ∗ g(ξ)dξ = (φ ∗ g) (x).

Theorem 6.6. Fix Kg ∈ G1, and let HKg be the RKHS. Let Tλ : HKg → L2 (dλ)
be as in (6.1), where dλ denotes the Lebesgue measure on R. Let fg,λ be the solution
in Theorem 2.1, i.e.,

fg,λ = T ∗
λ (α+ TλT

∗
λ )−1

φ

where φ ∈ L2 (dλ) is fixed. Then, by the L2-Fourier transform, we have

T̂λfg,λ =
[
TλT

∗
λ (α+ TλT

∗
λ )−1

φ
]∧

= ĝ

α+ ĝ
φ̂.

Moreover, the optimal selections from Lemmas 3.1 and 4.3, respectively, admit the
following explicit spectral representations:

∥∥fg,λ
∥∥2

HKg
=
∫

ĝ (λ)
(α+ ĝ (λ))2 |φ̂ (λ)|2 dλ, (6.5)

∥∥WKgf
g,λ
∥∥2

HKg ×L2(dλ) =
∫

ĝ (λ)
α+ ĝ (λ) |φ̂ (λ)|2 dλ. (6.6)

Proof. By the definition of T ∗
λ from (6.2), it follows that TλT

∗
λφ = g ∗ φ ∈ L2 (dλ),

and so T̂λT ∗
λφ = ĝφ̂.

It follows from this, that
∥∥fg,λ

∥∥2
HKg

=
(3.1)

∥∥∥(TλT
∗
λ )1/2 (α+ TλT

∗
λ )−1

φ
∥∥∥

2

L2(dλ)



Conditional mean embedding and optimal feature selection via positive definite kernels 101

=
∫

ĝ (λ)
(α+ ĝ (λ))2 |φ̂ (λ)|2 dλ

and on the other hand,
∥∥WKg

fg,λ
∥∥2

HKg ×L2(dλ) =
(4.7)

〈
φ, TλT

∗
λ (α+ TλT

∗
λ )−1

φ
〉

L2(dλ)

=
∫

ĝ (λ)
α+ ĝ (λ) |φ̂ (λ)|2 dλ.

Example 6.7. Let K1 and K2 be the p.d. kernels from (6.3). The formulas in
(6.5)–(6.6) take explicit forms, summarized in Table 1.

Table 1
The p.d. kernels K1 and K2

Kg = g (x− y) g = µ̂ µ
ĝ

(α+ ĝ)2
ĝ

α+ ĝ

K1 = e−|x−y| g1 = e−|x| dµ1 = 1
1+ξ2 dξ

1 + ξ2

(1 + α (1 + ξ2))2
1

1 + α (1 + ξ2)

K2 = e− 1
2 (x−y)2

g2 = e− 1
2 x2

dµ2 = e− 1
2 ξ2
dξ

e
1
2 x2

(
1 + αe

1
2 x2
)2

1
1 + αe

1
2 ξ2
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