PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przejście do detonacji w mieszaninach gazowych – przegląd stanu wiedzy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Transition to Detonation in Gaseous Mixtures – a State of the Art
Języki publikacji
PL
Abstrakty
PL
Spalanie detonacyjne w mieszaninach gazowych stanowi największe zagrożenie w przemyśle podczas transportu tych gazów w gazociągach. Prędkość rozprzestrzeniania się fali detonacyjnej, z frontem reakcji oraz falą uderzeniową wynosi ok. 1500‒2000 m/s, w zależności od mieszaniny, a ciśnienie powstałe podczas detonacji wynosi ok. 30 razy ciśnienie początkowe. Artykuł ten ma celu dokonanie przeglądu stanu wiedzy w zakresie przejścia do detonacji w mieszaninach gazowych.
EN
Detonative combustion in gaseous mixtures seems to be the most hazardous phenomena in the industrial process during the pipeline transport of flammable gases. The propagation velocity of detonation wave, including the reaction front and shock wave can obtain ca. 1500‒2000 m/s, depending on gaseous mixture and detonation pressure is about 30 times initial pressure. This paper shows a state of the art in the area of transition to detonation in gaseous mixtures.
Słowa kluczowe
Rocznik
Tom
Strony
21--44
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
  • Katedra Bezpieczeństwa Budowli i Rozpoznawania Zagrożeń Wydział Inżynierii Bezpieczeństwa Pożarowego Szkoła Główna Służby Pożarniczej
Bibliografia
  • [1] Bone W.A., Fraser R.P., Wheeler W.H., A photographic investigation of flame movements in gaseous explosions, The phenomenon of spin in detonation, Philos. Trans., R. Soc., A 29, 1935.
  • [2] Chapman W.R., Wheeler R.N., The propagation of flame in mixtures of methane and air, J. Chem. Soc., 2139, 1926.
  • [3] Shchelkin K.I., Occurrence of detonation in gases in rough-walled tubes, Sov. J. Tech. Phys., 17, 1947.
  • [4] Lee J.H.S., The detonation phenomenon, Cambridge University Press.
  • [5] Zel’dovich Ya. B. et al, On the development of detonation in a non-uniformly preheated gas, Astronaut. Acta, 15, 131, 1970.
  • [6] Zel’dovich Ya. B., Regime classification of an exothermic reaction with non-uniform initial conditions, Combustion and Flame, 39, 211, 1990.
  • [7] Lee J.H.S., Knystautas R., Yoshikawa N., Photochemical initiation of gaseous detonations, Acta Astronaut., 5, 971, 1978.
  • [8] Shepherd J.E., Lee J.H.S., On the transition from deflagration to detonation, Major Research Topics in Combustion, Springer, New York, 1992.
  • [9] Kuznetsov M. et al, Effect of boundary layer on flame propagation and DDT, Proceedings of the 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, Montreal, 2005.
  • [10] Oppenheim A.K., Stern R.A., On the development of gaseous detonation – analysis of wave phenomena, Proceedings of Combustion Institute, 7, 837, 1959.
  • [11] Oppenheim A.K., Urtiew P.A., Experimental observations of the transition to detonation in an explosive gas, Proc. R. Soc., A 295, 13, 1966.
  • [12] Khokhlov A.M., Oran E.S., Numerical simulation of detonation initiation in a flame brush: The role of hot spots, Combustion and Flame, 119, 1999.
  • [13] Oran E.S., Gamezo V.N., Khokhlov A.M., The influence of shock bifurcations on shock flame interactions and DDT, Combustion and Flame, 126, 2001.
  • [14] Oran E.S., Gamezo V.N., Origins of the deflagration-to-detonation transition in gas-phase combustion, Combustion and Flame, 148, 2007.
  • [15] Lee J.H.S., On the transition from deflagration to detonation, 10th International Colloquium on Explosions and Reactive Systems, 04‒09.08.1985, Berkeley, California, USA.
  • [16] Egerton A., Gates S.F., On detonation in gaseous mixtures at high initial pressures and temperatures, Proc. R. Soc., Lond., 114, 1927.
  • [17] Shchelkin K.I., Sokolik A.S., Detonation in gaseous mixtures, Soviet. Zhurn. Phys. Chem., 10, 1937.
  • [18] Bollinger L.E., Fong M.C., Edse R., Experimental measurements and theoretical analysis of detonation induction distances, J. Am. Rocket Soc., 31, 1961.
  • [19] Kuznetsov M, DDT in smooth tube filled with a hydrogen-oxygen mixture, Shock Waves, 14, 2005.
  • [20] Steen H., Schampel K., Experimental investigation of run-up distance of gaseous detonations in large pipes, 40th International Symposium on Loss Prevention and Safety Promotion in the Process Industries, UK, London, 1983.
  • [21] Fickett W., Davis W.C., Detonation theory and experiment, Dover Publication, 1979.
  • [22] Zel’dovich Ya. B., Raizer Yu. P., Physics of shock waves and high temperature hydrodynamic phenomena, Dover Publication, 1966.
  • [23] Dorge K.J., Pangritz D., Wagner H.G., On the influence of several orifices on the propagation of flames: Continuation of the experiments of Wheeler, Z. Fur Phys. Chemie, 127, 61, 1981.
  • [24] Moen I.O., Flame acceleration due to turbulence produced by obstacles, Combustion and Flame, 39, 1980.
  • [25] Moen I.O., Pressure development due to turbulent flame propagation in large-scale methane-air explosions, Combustion and Flame, 47, 1982.
  • [26] Chan C., Moen I.O., Lee J.H.S., Influence of confinement on flame acceleration due to repeated obstacles, Combustion and Flame, 49, 1983.
  • [27] Hjertager B.H., Flame acceleration of propane-air in a large-scale obstructed tube, Progress in Astronautics and Aeronautics, 94, 1984.
  • [28] Lee J.H.S., Knystautas R., Freiman A., High speed turbulent deflagrations and transition to detonation in H2-air mixtures, Combustion and Flame, 56, 1984.
  • [29] Lee J.H.S., Knystautas R., Chan C., Turbulent flame propagation in obstacle-filled tubes, Proceedings of the Combustion Institute, 20, 1984.
  • [30] Peraldi O., Lee J.H.S., Knystautas R., Criteria for transition to detonation in tubes, Proceedings of the Combustion Institute, 21,1986.
  • [31] Teodorczyk A., Lee J.H.S., Knystautas R., Photographic studies of the structure and propagation mechanisms of quasi-detonations in rough tube, Progress in Astronautics and Aeronautics, 133, 1991.
  • [32] Shepherd J.E., Teodorczyk A., Lee J.H.S., Knystautas R., Shock waves produced by reflected detonations, Progress in Astronautics and Aeronautics, 134, 1991.
  • [33] Markstein G.H., Non-steady flame propagation, Mc Millan, New York, 1964.
  • [34] Yatsufusa T., Chao J.C., Lee J.H.S., The effect of perturbation on the onset of detonation, Proceedings of 21st International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, 2007.
  • [35] Lee J.H.S., Moen I., The mechanism of transition from deflagration to detonation in vapour cloud explosion, Progress in Energy and Combustion Science, 6, 1980.
  • [36] Teodorczyk A., Lee J.H.S., Knystautas R., Propagation mechanism of quasi-detonations, Proceedings of the Combustion Institute, 22, 1988.
  • [37] Teodorczyk A., Lee J.H.S., Knystautas R., The structure of fast turbulent flames in very rough, obstacle-filled channels, Proceedings of the Combustion Institute, 23, 1990.
  • [38] Gamezo V.N., Ogawa T., Oran E.S., Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen-air mixture, Proceedings of the Combustion Institute, 31, 2007.
  • [39] Oran E.S., Gamezo V.N., KesslerD.A., Simulations of flame acceleration and deflagration to detonation transition in methane-air systems, Combustion and Flame, 157, 2010.
  • [40] Akkerman V., Valiev D., Bychkov V., Law C.K., Eriksson L-E., Flame acceleration in channels with obstacles in the deflagration-to-detonation transition, Combustion and Flame, 157, 2010.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-213eba9e-6658-4ac5-a7f1-41dfdb30da70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.