Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
There have been few studies regarding the torsional behavior of FRP-reinforced concrete members. Only the CSA S806-12 and the ACI 440.11-22 codes specify the design criteria for their pure torsional capacities. A meso-scale numerical model of circular/square concrete columns with BFRP bars was developed, in which concrete heterogeneity can be explicitly described. This study evaluated longitudinal reinforcement ratios, stirrup ratios, cross-section shape, and structural size for their effects on BFRP-reinforced concrete column torsional performance. For BFRP-reinforced concrete columns, the nominal torsional strength exhibits a significant size effect, while the longitudinal reinforcement and stirrups ratio cannot suppress the size effect. Furthermore, a modified size effect law was developed to quantitatively reflect the relationship between nominal torsional strength and structural size. BFRP-reinforced concrete columns present a more substantial size effect than steel-reinforced ones. Finally, a modified calculation formula of pure torsional capacity was proposed considering the effect of structural size.
Czasopismo
Rocznik
Tom
Strony
art. no. e30, 2024
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
autor
- The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China
autor
- The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China
autor
- The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China
autor
- The Key Laboratory of Urban Security and Disaster Engineering, Beijing University of Technology, Beijing 100124, China
Bibliografia
- 1. Mohamed HM, Benmokrane B. Reinforced concrete beams wit hand without FRP web reinforcement under pure torsion. J BridgeEng. 2016;21(3):04015070.
- 2. Zhang P, Chen B, Liu Y, Tu Y, Gao D, Zhao J, Sheikh SA. Experimental study on the axial compression behavior of columns confined by BFRP ties. Compos Struct. 2021;258: 113302.
- 3. Jumaa GB, Yousif AR. Size effect on the shear failure of high-strength concrete beams reinforced with basalt FRP bars and stirrups. Constr Build Mater. 2019;209:77–94.
- 4. Ragab KS, Eisa AS. Torsion behaviour of steel fibered high strength self compacting concrete beams reinforced by GFRP bars. World Acad Sci Eng Technol Int J Civ Archit Sci Eng.2013;7(9):218–28.
- 5. Zhou J, Shen W, Wang S. Experimental study on torsional behavior of FRC and ECC beams reinforced with GFRP bars. ConstrBuild Mater. 2017;152:74–81.
- 6. Bažant ZP, Şener S, Prat PC. Size effect tests of torsional failure of plain and reinforced concrete beams. Mater Struct.1988;21(6):425–30.
- 7. Jin L, Zhu H, Du X. Meso-scale modelling of size effect onpure torsional-shear of RC columns. Archiv Civ Mech Eng.2022;22(1):1–19.
- 8. CSA (Canadian Standards Association). Design and construction of buildings components with fiber-reinforced polymers.S806-12. Toronto: Canadian Standards Association; 2012.
- 9. ACI (American Concrete Institute). Building code requirements for structural concrete reinforced with glass fiber-reinforced polymer (GFRP) bars-code and commentary. 440.11-22. Farmington Hills, MI; 2022.
- 10. ACI (American Concrete Institute). Building code requirements for reinforced concrete. 318-19. Farmington Hills, MI; 2019.
- 11. Ahmed EA, El-Sayed AK, El-Salakawy E, Benmokrane B. Bendstrength of FRP stirrups: comparison and evaluation of testing methods. J Compos Constr. 2010;14(1):3–10.
- 12. Rangari S, Murali K, Deb A. Effect of meso-structure on strength and size effect in concrete under compression. EngFract Mech. 2018;195:162–85.
- 13. Wu Z, Zhang J, Fang Q, Yu H, Ma H. Mesoscopic modelling of concrete material under static and dynamic loadings: a review.Constr Build Mater. 2021;278: 122419.
- 14. Jin L, Yu W, Du X, Zhang S, Li D. Meso-scale modelling of thesize effect on dynamic compressive failure of concrete under different strain rates. Int J Impact Eng. 2019;125:1–12.
- 15. Ministry of Construction of the People’s Republic of China. Code for design of concrete structures. GB 50010-2010. China Construction Industry Press: Beijing (in Chinese).
- 16. Jin L, Li X, Zhang R, Du X. Bond-slip behavior between concrete and deformed rebar at elevated temperature: mesoscale simulation and formulation. Int J Mech Sci. 2021;205: 106622.
- 17. Jin L, Miao L, Han J, Du X, Wei N, Li D. Size effect tests on shear failure of interior RC beam-to-column joints under monotonic and cyclic loadings. Eng Struct. 2018;175:591–604.
- 18. Jin L, Chen H, Wang Z, Du X. Size effect on axial compressive failure of CFRP-wrapped square concrete columns: tests and simulations. Compos Struct. 2020;254:112843.
- 19. Jin L, Wan S, Li D, Miao L, Du X. Influence of concrete strength and aggregate size on the size effect of shear capacity of RC beam-column joints under monotonic loading: mesoscale numerical tests. Struct. 2022;37:671–85.
- 20. Xu J, Li F. A meso-scale model for analyzing the chloride diffusion of concrete subjected to external stress. Constr BuildMater. 2017;130:11–21.
- 21. Wriggers P, Moftah SO. Mesoscale models for concrete: homogenisation and damage behavior. Finite Elem Anal Des.2006;42(7):623–36.
- 22. Jin L, Li J, Yu W, Du X. Mesoscopic simulations on the strength and size effect of concrete under biaxial loading. Eng FractMech. 2021;253: 107870.
- 23. Meddah MS, Zitouni S, Belâabes S. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Constr Build Mater. 2010;4(4):505–12.
- 24. Königsberger M, Pichler B, Hellmich C. Micromechanics of ITZ–aggregate interaction in concrete part I: stress concentration. J Am Ceram Soc. 2014;97(2):535–42.
- 25. Kim SM, Abu Al-Rub RK. Meso-scale computational modeling of the plastic-damage response of cementitious composites.Cem Concr Res. 2011;41(3):339–58.
- 26. Song Z, Lu Y. Mesoscopic analysis of concrete under exces-sively high strain rate compression and implications on inter-pretation of test data. Int J Impact Eng. 2012;46:41–55.
- 27. Cao X, Wu L, Li Z. Behaviour of steel-reinforced concrete columns under combined torsion based on ABAQUS FEA. EngStruct. 2020;209: 109980.
- 28. Garboczi EJ, Bentz DP. Digital simulation of the aggregate–cement paste interfacial zone in concrete. J Mater Res.1991;6(1):196–201.
- 29. Lubliner J, Oliver J, Oller S, Oñate E. A plastic-damage model for concrete. Int J Solids Struct. 1989;25(3):299–326.
- 30. Santos L, Cardoso H, Caldas RB, Grilo LF. Finite element model for bolted shear connectors in concrete-filled steel tubular columns. Eng Struct. 2020;203: 109863.
- 31. Orozco AL, Maji AK. Energy release in fiber-reinforced plastic reinforced concrete beams. J Compos Constr. 2004;8(1):52–8.
- 32. Wang XY. Study on seismic performance of concrete column reinforced by hybrid steel and CFRP rebars. Harbin: Harbin Institute of Technology; 2016. (in Chinese).
- 33. Jin L, Lei Y, Yu W, Du X. Dynamic shear failure and size effectin BFRP-reinforced concrete deep beam. Eng Struct. 2021;245:112951.
- 34. Ibrahim AMA, Fahmy MFM, Wu Z. 3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loading. Compos Struct. 2016;143:33–52.
- 35. Cai ZK. Seismic performance and design method of hybrid reinforced precast segmental bridge columns. Harbin: Harbin Institute of Technology; 2018. (in Chinese).
- 36. Yong Y, Li Z, Zhang T, Wei J, Yu Q. Bond-slip behavior of basalt fiber reinforced polymer bar in concrete subjected to simulated marine environment: effects of BFRP bar size, corrosion age, and concrete strength. Int J Polym Sci. 2017;3(26):1–9.
- 37. Cosenza E, Manfredi G, Realfonzo R. Behavior and modeling of bond of FRP rebars to concrete. J Compos Constr.1997;1(2):40–51.
- 38. Okelo R, Yuan RL. Bond strength of fiber reinforced polymer rebars in normal strength concrete. J Compos Constr.2005;9(3):203–13.
- 39. Huang L, Chen J, Qu J, Dai Q. Modeling for bond-constitutive relationships of FRP rebars to concrete matrix. Constr BuildMater. 2020;263: 120654.
- 40. Gambarelli S, Zadran S. Coupled hygro-mechanical meso-scale analysis of long-term creep and shrinkage of concrete cylinder.Eng Struct. 2022;262: 114332.
- 41. Jin L, Jiang X, Xia H, Chen F, Du X. Size effect in shear failure of lightweight concrete beams wrapped with CFRP without stirrups: influence of fiber ratio. Compos B Eng. 2020;199: 108257.
- 42. Huo BR. Theoretical and experimental study of BFRP-concrete structure. doctoral thesis. Liaoning Project Technology University; 2011 (in Chinese).
- 43. Mohamed HM, Chaallal O, Benmokrane B. Torsional moment capacity and failure mode mechanisms of concrete beams reinforced with carbon FRP bars and stirrups. J Compos Constr.2015;19(2):04014049.
- 44. De Domenico D. Torsional strength of RC members using a plasticity-based variable-angle space truss model accounting for non-uniform longitudinal reinforcement. Eng Struct. 2021;228:111540.
- 45. Hassan MM, Deifalla A. Evaluating the new CAN/CSA-S806-12 torsion provisions for concrete beams with FRP reinforcements. Mater Struct. 2016;49(7):2715–29.
- 46. Kirane K, Singh KD, Bažant ZP. Size effect in torsional strength of plain and reinforced concrete. ACI Struct J.2016;113(6):1253–62.
- 47. Bažant ZP, Kim JK. Size effect in shear failure of longitudinally reinforced beams. ACI Struct J. 1984;81(5):456–68.
- 48. Bažant ZP. Size effect in blunt fracture: concrete. J Eng Mech.1984;110(4):518–35.
- 49. Lai CD, Xie M, Murthy DNP. A modified Weibull distribution. IEEE T Relia. 2003;52(1):33–7.
- 50. Carpinteri A. Fractal nature of material microstructure and size effects on apparent mechanical properties. Mech Mater.1994;18(2):89–101.
- 51. Hu X, Wittmann F. Size effect on toughness induced by crack close to free surface. Eng Fract Mech. 2000;65(2–3):209–21.
- 52. Bažant ZP, Planas J. Fracture and size effect in concrete and other quasibrittle material. Boca Raton: CRC Press; 1997.
- 53. Chen H, Yi WJ, Ma ZJ. Shear size effect in simply supported RC deep beams. Eng Struct. 2019;182:268–78.
- 54. Kim JK. Size effect in concrete specimens with dissimilar initial cracks. Mag Concr Res. 1990;42(153):233–8.
- 55. Deifalla A. Refining the torsion design of fibered concrete beams reinforced with FRP using multi-variable nonlinear regression analysis for experimental results. Eng Struct. 2021;226: 111394.
- 56. Mohamed HM, Benmokrane B. Torsion behavior of concrete beams reinforced with glass fiber-reinforced polymer bars and stirrups. ACI Struct. 2015;112(5):543–52.
- 57. Shehab HK, El-Awady HS, Husain M, Mandour S. Behavior of concrete beams reinforced by FRP bars under torsion. In: Proceedings of the 13th ICSGE 2009, Cairo, Egypt. 6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-213e77fd-2f8c-43fa-948e-ea3001022dd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.