PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuel-Saving Solution for Forklifts Using Hydraulic Energy Storage and Regeneration Device Cluster Additionally Installed

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Forklifts are indispensable vehicles in warehouse logistics work. Large forklifts have a common configuration that uses a combustion engine to create energy to drive the machine's hydraulic system. Due to the characteristics of diesel engines, a large amount of energy is wasted and harmful gases are emitted every day. Especially with millions of older-generation forklifts and construction machines being used in developing countries, the above problem is even more serious while immediately replacing them with new generation machines is impossible. To solve this, the solution is to design and manufacture an additional device cluster to save fuel and reduce emissions. It is both economically and environmentally viable with the right technology. This article proposes the structure and working principle of an additional hydraulic device cluster to increase the working efficiency of the above types of forklifts. Based on building a mathematical model of the mechanical-hydraulic system during the lowering and lifting processes when applying the solution, the main parameters of the process were surveyed. The solution applied on a 3.5 tons forklift shows that the renewable energy percentage in one lowering and lifting cycle is 65.5%. The amount of diesel saved in a year is 2057 liters, corresponding to the one of CO2, CH4 and N2O emissions removed by 5.55 tons, 223 grams and 326 grams, respectively. The proposed device cluster installation is easy with older-generation forklifts and can also be applied in the production of new forklifts.
Twórcy
  • Faculty of Mechanical Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung District, Hanoi, 100000, Vietnam
Bibliografia
  • 1. Yoshida M., Tsukamoto Y., Matsuda T., Dougan Y., Ueno K. Introducing Electric-powered Forklift Truck “New ARION Series”. Komatsu Technical Report 2007, 53(195), 1–6. https://www.komatsu.jp/en/company/tech-innovation/report/pdf/159-06_E.pdf (Accessed: 05.02.2024).
  • 2. Ogawa K., Futahashi K., Teshima T., Akahane F. Development of the world’s first engine/ battery hybrid forklift truck. Mitsubishi Heavy Industries Technical Review 2010, 47(1), 46–50. https://www.mhi.co.jp/technology/review/pdf/e471/e471046.pdf (Accessed: 07.02.2024).
  • 3. Oxley L.R. Hybrid Forklift Truck. US Patent Application Publication, Pub. No. US 2015/0122584 A1, 2015.
  • 4. Minav T., Laurila L., Pyrhönen J. Energy Recovery efficiency comparison in an electro-hydraulic forklift and in a diesel hybrid heavy forwarder. In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion. Pisa, Italy, June 2010. https://doi.org/10.1109/SPEEDAM.2010.5542232.
  • 5. Xiao Q., Wang Q., Zhang Y. Control strategies of power system in hybrid hydraulic excavator. Automation in Construction 2008, 17(4), 361–367. https://doi.org/10.1016/j.autcon.2007.05.014.
  • 6. Wang D., Gua C., Pan S., Zhang M., Lin X. Performance analysis of hydraulic excavator powertrain hybridization. Automation in Construction 2009, 18(3), 249–257. https://doi.org/10.1016/j.autcon.2008.10.001.
  • 7. Lin T., Wang Q., Hu B., Gong W. Research on the energy regeneration systems for hydraulic excavators. Automation in Construction 2010, 19(8), 1016–1026. https://doi.org/10.1016/j.autcon.2010.08.002.
  • 8. Keränen T.M., Karimäki H., Viitakangas J., Vallet J., Ihonen J., Hyötylä P., Uusalo H., Tingelöf T. Development of integrated fuel cell hybrid power source for electric forklift. Journal of Power Sources 2011, 196(21), 9058–9068. https://doi.org/10.1016/j.jpowsour.2011.01.025.
  • 9. Hosseinzadeh E., Rokni M., Advani S., Prasad A. Performance simulation and analysis of a fuel cell/battery hybrid forklift truck. International Journal of Hydrogen Energy 2013, 38(11), 4241–4249. https://doi.org/10.1016/j.ijhydene.2013.01.168.
  • 10. Minaw T., Virtanen A., Laurila L., Pyrhoenen J. Storage of energy recovered from an industrial forklift. Automation in Construction 2012, 22, 506–515. https://doi.org/10.1016/j.autcon.2011.11.010.
  • 11. Shin M.-H., Eom T.-H., Park Y.-H., Won C.-Y. Design and control of fuel cell-battery hybrid system for forklift. In: IEEE Transportation Electrification Conference and Expo. Busan, Korea, 584–589, June 2016. https://doi.org/10.1109/ITEC-AP.2016.7513020.
  • 12. Hui S., Junqing J. Research on the system configuration and energy control strategy for parallel hydraulic hybrid loader. Automation in Construction 2010, 19(2), 213–220. https://doi.org/10.1016/j.autcon.2009.10.006.
  • 13. Lin T., Huang W., Ren H., Fu S., Liu Q. New compound energy regeneration system and control strategy for hybrid hydraulic excavators. Automation in Construction 2016, 68, 11–20. https://doi.org/10.1016/j.autcon.2016.03.016.
  • 14. Fu Z., Wang B., Song X., Liu L., Wang X. Powersplit hybrid electric vehicle energy management based on improved logic threshold approach. Mathematical Problems in Engineering 2013, 2013(11), 1–9. https://doi.org/10.1155/2013/840648.
  • 15. Chen Q., Lin T., Ren H. Parameters optimization and control strategy of power train systems in hybrid hydraulic excavators. Mechatronics 2018, 56, 16–25. https://doi.org/10.1016/j.mechatronics.2018.10.003.
  • 16. Chen Q., Lin T., Ren H., Fu S. Novel potential energy regeneration systems for hybrid hydraulic excavators. Mathematics and Computers in Simulation 2019, 163, 130–145. https://doi.org/10.1016/j.matcom.2019.02.017.
  • 17. Žvirblis T., Hunicz J., Matijošius J., Rimkus A., Kilikevičius A., Gęca M. Improving diesel engine reliability using an optimal prognostic model to predict diesel engine emissions and performance using pure diesel and hydrogenated vegetable oil. Eksploatacja i Niezawodność – Maintenance and Reliability 2023, 25(4), 174358. https://doi.org/10.17531/ein/174358.
  • 18. Caban J., Gniecka A., Holeša L. Alternative fuels for diesel engines. Adv. Sci. Technol. Res. J. 2013, 7(20), 70–74. https://doi.org/10.5604/20804075.1073063.
  • 19. Caban J., Droźdiel P., Ignaciuk P., Kordos P. The impact of changing the fuel dose on chosen parameters of the diesel engine start-up process. Transport Problems 2019, 14(4), 51–62. https://doi.org/10.20858/tp.2019.14.4.5.
  • 20. Hoang A.T., and Pham V.V. A study on a solution to reduce emissions by using hydrogen as an alternative fuel for a diesel engine integrated exhaust gas recirculation. AIP Conference Proceedings 2020, 2235, 020035. https://doi.org/10.1063/5.0007492.
  • 21. Hijikata S., Weishaar P., Leifeld R., Schmitz K. Experimental evaluation of system efficiency for a hydraulic hybrid architecture of excavators. MM Science Journal 2018, 2455–2459. https://doi.org/10.17973/MMSJ.2018_10_201836.
  • 22. Bak M.K. and Hansen M.R. Analysis of offshore knuckle boom crane - part one: modeling and parameter identification. Modeling, Identification and Control 2013, 34(4), 157–174. https://doi.org/10.4173/mic.2013.4.1
  • 23. Wickert J., Lewis K. An Introduction to Mechanical Engineering. Cengage Learning, USA, 2017.
  • 24. U.S. Environmental Protection Agency. Emission Factors for Greenhouse Gas Inventories. https://www.epa.gov/system/files/documents/2023-03/ghg_emission_factors_hub.pdf, 2023. (Accessed: 05.02.2024).
  • 25. Nguyen V.T. Anti-vibration control of turntable ladders by a steel rope-hydraulic control system. Eng. Technol. Appl. Sci. Res. 2023, 13(2), 10389–10394. https://doi.org/10.48084/etasr.5642.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-213b611e-dd8e-4934-bd3f-a4d291ccad1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.