PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of Eco-Friendly Rice Husk Ash Waste as Reinforcement in LDPE Thermoplastics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The topic of environmental contamination is currently regarded as one of the most urgent and significant challenges in contemporary society. Several strategies must be implemented to mitigate the environmental impact caused by waste materials, such as to rice husks ash, plastic, and other materials. Low-density polyethylene is widely recognized in academic circles for its distinctive property of having a low melting point and demonstrating inferior thermal stability. However, the utilization of RHA has promise for augmenting the thermal LDPE. The inclusion of silica inside rice husk ash functions as a flame retardant, hence augmenting the material’s capacity to resist combustion and thermal degradation. The objective of this study is to utilization of eco-friendly RHA waste as reinforcement in LDPE thermoplastics. RHA is produced by the coprecipitation process. Rheomixer is used to make thermoplastic composites by incorporate RHA into LDPE 0, 2, 4, 6, 8, and 10 wt.%. The micrograph of the failure surface of the composite material consisting of LDPE filled with reactive hot-melt adhesive RHA particles reveals significant variations in particle sizes. In adittion XRD graph showed a decrease in intensity when 6% wt and 8% wt RHA were added. The results of thermal analysis with DSC showed an increase in the melting point of the sample with RHA reinforcement from 108.96–109.21°C and 482.47–500.09°C. The incorporation of RHA as a reinforcement in LDPE holds promise for its utilization as a material possessing favorable thermal characteristics suitable for industrial applications such as pipes and protective coatings, which required enhanced thermal resistance. The utilization of rice husk ash (RHA) waste imposes both environmental and economic impacts. RHA has the potential to reduce environmental pollution caused by waste and decrease the costs involved in material production.
Słowa kluczowe
Twórcy
  • Departement of Physics, Universitas Negeri Medan, Jl. William Iskandar Ps. V, Kenangan Baru, Kec. Percut Sei Tuan, Kabupaten Deli Serdang, Sumatera Utara 20221, Indonesia
autor
  • Departement of Physics, Universitas Negeri Medan, Jl. William Iskandar Ps. V, Kenangan Baru, Kec. Percut Sei Tuan, Kabupaten Deli Serdang, Sumatera Utara 20221, Indonesia
  • Departement of Physics, Universitas Negeri Medan, Jl. William Iskandar Ps. V, Kenangan Baru, Kec. Percut Sei Tuan, Kabupaten Deli Serdang, Sumatera Utara 20221, Indonesia
autor
  • Departement of Physics, Universitas Negeri Medan, Jl. William Iskandar Ps. V, Kenangan Baru, Kec. Percut Sei Tuan, Kabupaten Deli Serdang, Sumatera Utara 20221, Indonesia
  • Universitas Quality Berastagi, Raya, Jl. Jamin Ginting No.41, Kabupaten Karo, Sumatera Utara 22152, Indonesia
Bibliografia
  • 1. Sara Ronca, 2017. Polyethylene, in Brydson’s Plastics Materials (Eighth Edition), Elsevier, 247–278.
  • 2. Prachayawarakorn J., P. Sangnitidej P., Boonpasith P. 2010. Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene, Carbohydr Polym, 81(2), 425–433. doi: 10.1016/j.carbpol.2010.02.041.
  • 3. R. C. J and P. J. Martin, Plastics Engineering. USA: Elsevier, 2020.
  • 4. Chen X., Su Y., Reay D., Riffat S. 2016. Recent research developments in polymer heat exchangers - A review, Renewable and Sustainable Energy Reviews, 60, 1367–1386. doi: 10.1016/j.rser.2016.03.024.
  • 5. Thomas D., Augustine S., Prakash J. 2015. Microtron Irradiation Induced Tuning of Dielectric Properties of LDPE-ZnO Nanocomposites, Journal of Applied Chemistry, 1–4, 2015. doi: 10.1155/2015/764687.
  • 6. Nasiri A., Akbari Z. 2012. Synthesis of LDPE/Nano TiO2 Nanocomposite for Packaging Applications, International Journal of Nanoscience and Nanotechnology, 8(3), 165–170.
  • 7. Zazoum B., David E., Ngô A.D. 2013. LDPE/HDPE/clay nanocomposites: Effects of compatibilizer on the structure and dielectric response, J Nanotechnol, vol. 2013. doi: 10.1155/2013/138457.
  • 8. Frida E., Bukit N., Sinuhaji P., Bukit F.R.A., Bukit B.F. 2023. New Material Nanocomposite Thermoplastic Elastomer with Low Cost Hybrid Filler Oil Palm Boiler Ash/Carbon Black, Journal of Ecological Engineering, 24(2), 302–308. doi:10.12911/22998993/156903.
  • 9. Frida E., Bukit N., Bukit F.R.A., Bukit B.F. 2023. Effect of Hybrid Filler Oil Palm Boiler Ash –Bentonite on Thermal Characteristics of Natural Rubber Compounds, Ecological Engineering and Environmental Technology, 24(2), 205–213. doi: 10.12912/27197050/156961.
  • 10. Mohammed L., Ansari M.N.M., Pua G., Jawaid M., Islam M.S. 2015. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications, Int J Polym Sci, 2015. doi: 10.1155/2015/243947.
  • 11. Praveen Kumar C.M., Ashok R.B, Mohan Kumar., Roopa C.P. 2022. Natural nano-fillers materials for the Bio-composites: A review, Journal of the Indian Chemical Society, 99(10), #100715. doi: 10.1016/J.JICS.2022.100715.
  • 12. Bukit B.F., Frida E., Humaidi S., Sinuhaji P. 2022. Selfcleaning and antibacterial activities of textiles using nanocomposite oil palm boiler ash (OPBA), TiO2 and chitosan as coating, S Afr J Chem Eng, 41, 105–110. doi: 10.1016/j.sajce.2022.05.007.
  • 13. Frida E., Bukit N., Bukit F.R.A., Bukit B.F. 2022. Preparation and characterization of Bentonite-OPBA nanocomposite as filler, J Phys Conf Ser, 2165(1). doi: 10.1088/1742-6596/2165/1/012023.
  • 14. Melikoğlu A.Y., Tekin İ., Hayatioğlu N., Ersus S. 2023. Development of environmentally friendly composite packaging films from safflower (Carthamus tinctorius L.) plant waste, Food Biosci, 55(1–8). doi: https://doi.org/10.1016/j.fbio.2023.102991.
  • 15. Valdés A., Mellinas A.C., Ramos M., Garrigós M.C., Jiménez A. 2014. Natural additives and agricultural wastes in biopolymer formulations for food packaging, Front Chem, vol. 2, 1–10. doi: 10.3389/fchem.2014.00006.
  • 16. Ginting E.M., Bukit N., Frida E. 2017 Preparation and Characterization Of Nano Composites Hdpe Blend with Rice Husk Ash Nanoparticles, Int J Chemtech Res, 10(13), 348–356.
  • 17. Zamiah Kassim Shaari N., Syasya Mohd Shukri A., Jai J. 2021 Effects of Rice Husk Ash Loadings on the Tapioca Starch-based Film Composite, International Transaction Journal of Engineering, 12(9), 1–9. doi: 10.14456/ITJEMAST.2021.185.
  • 18. Hossain S.K.S., Mathur L., Roy P.K. 2018. Rice husk/rice husk ash as an alternative source of silica in ceramics: A review, Journal of Asian Ceramic Societies, 6(4), 299–313,. doi: 10.1080/21870764.2018.1539210.
  • 19. Bukit N., Ginting E.M., Motlan M., Sani R.A., Data Extraction of Nano Silica as a potential filler in nanocomposites from Rice Husk Ash with Ballmill and Coprecipitation Methods, Mendeley Data, V1, doi: 10.17632/3bksddznyg.1.
  • 20. Chun J., Mo Gu Y., Hwang J., Oh K.K., Lee J. H. 2020. Synthesis of ordered mesoporous silica with various pore structures using high-purity silica extracted from rice husk, Journal of Industrial and Engineering Chemistry, 81, 135–143. doi: 10.1016/j.jiec.2019.08.064.
  • 21. Le V.H., Thuc C.N.H., Thuc H.H. 2013. Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method, Nanoscale Res Lett, 8(1), 58. doi: 10.1186/1556-276x-8-58.
  • 22. Pillai P., Dharaskar S., Pandian S. 2020. Rice husk derived silica nano doped on calcium peroxide for fluoride: Performance, characterization, kinetic, isotherm, and groundwater treatment, Environ Technol Innov. doi: 10.1016/j.eti.2020.100901.
  • 23. Bukit B.F., Frida E., Humaidi S., Sinuhaji P., Bukit N. 2022. Optimization of Palm Oil Boiler Ash Biomass Waste as a Source of Silica with Various Preparation Methods, 23(8), 193–199.
  • 24. Fernandesa I.J., Santos R.V., Dos Santos E.C.A., Rocha T.L.A.C., Junior N.S.D., Moraes C.A.M. 2018. Replacement of commercial silica by rice husk ash in epoxy composites: A comparative analysis, Materials Research, 21(3). doi: 10.1590/1980-5373-MR-2016-0562.
  • 25. Cardona Uribe N., Arenas Echeverry C., Betancur Velez M., Jaramillo L., Martinez J. 2018. Possibilities of rice husk ash to be used as reinforcing filler in polymer sector -a review, Revista UIS Ingenierías, 17(1), 127–142. doi: 10.18273/revuin. v17n1-2018012.
  • 26. Park J.B. 1979. Characterization of Materials, Biomaterials, 7–28. doi: 10.1007/978-1-4684-3423-1_2.
  • 27. Ural N. 2021. The significance of scanning electron microscopy (SEM) analysis on the microstructure of improved clay: An overview, Open Geosciences, 13(1), 197–218. doi: 10.1515/geo-2020-0145.
  • 28. Zhu J., Abeykoon C., Karim N. 2021. Investigation into the effects of fillers in polymer processing, International Journal of Lightweight Materials and Manufacture, 4(3), 370–382. doi: 10.1016/j.ijlmm.2021.04.003.
  • 29. Ayswarya E.P., Vidya Francis K.F., Renju V.S., Thachil E.T. 2012. Rice husk ash - A valuable reinforcement for high density polyethylene, Mater Des, 41, 1–7. doi: 10.1016/j.matdes.2012.04.035.
  • 30. Spink C.H. 2008. Differential Scanning Calorimetry, Methods Cell Biol, 84 (7), 115–141. doi: 10.1016/S0091-679X(07)84005-2.
  • 31. Li D., Zhou L., Wang X., He L., Yang X. 2019. Effect of crystallinity of polyethylene with different densities on breakdown strength and conductance property, Materials, 12(11). doi: 10.3390/ma12111746.
  • 32. Gaska K., Xu X., Gubanski S., Kádár R. 2017. Electrical, mechanical, and thermal properties of LDPE graphene nanoplatelets composites produced by means of melt extrusion process, Polymers (Basel), 9(1), 30–40. doi: 10.3390/polym9010011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21347dbe-53b8-4df3-afcc-01e8af0665aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.