PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational analysis of soret and dufour effects on nanofluid flow through a stenosed artery in the presence of temperature-dependent viscosity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the Soret and Dufour effects in a composite stenosed artery were combined with an analysis of the effect of varying viscosity on copper nanofluids in a porous medium. Blood viscosity, which changes with temperature, is taken into account using the Reynolds viscosity model. The finite difference approach is used to quantitatively solve the governing equations. For use in medical applications, the effects of the physical parameters on velocity, temperature and concentration along the radial axis have been investigated and physically interpreted. The results are graphically displayed and physically defined in order to facilitate comprehension of the various phenomena that occur in the artery when nanofluid is present. It is observed that the Soret effect increases the rate of heat transfer but decreases the rate of mass transfer. The new study enhances knowledge of non-surgical treatment options for stenosis and other abnormalities, hence reducing post-operative complications. Additionally, current research may have biomedical applications such as magnetic resonance angiography (MRA), which provide a picture of an artery and enable identification of any anomalies, and thus may be useful
Rocznik
Strony
246--263
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
  • Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi Arabia
Bibliografia
  • 1. Chan BT, Lim E, Chee KH, Osman NAA. Review on CFD simulation in heart with dilated cardiomyopathy and myocardial infarction. Comput Biol Med. 2013;43(4):377–385. https://doi.org/10.1016/j.compbiomed.2013.01.013. Epub 2013
  • 2. Akbar NS, Nadeem S. Blood flow analysis in tapered stenosed arteries with pseudoplastic characteristics. Int J Biomath. 2014;7(6):1450065. https://doi.org/10.1142/S179352451450065X
  • 3. Sankar DS. Two-phase non-linear model for blood flow in asymmetric and axisymmetric stenosed arteries. Int J Non Linear Mech. 2011;46(1):296–305. https://doi.org/10.1016/j.ijnonlinmec.2010.09.011
  • 4. Thurston GB. Erythrocyte rigidity as a factor in blood rheology: viscoelastic dilatancy. J Rheol (N Y N Y). 1979;23(6):703–719. https://doi.org/10.1122/1.549506
  • 5. Wolberg AS, Campbell RA. Thrombin generation, fibrin clot formation and hemostasis. Transfus Apher Sci. 2008;38(1):15–23. https://doi.org/10.1016/j.transci.2007.12.005
  • 6. Roustaei M, Nikmaneshi MR, Firoozabadi B. Simulation of Low Density Lipoprotein (LDL) permeation into multilayer coronary arterial wall: Interactive effects of wall shear stress and fluid-structure interaction in hypertension. J Biomech. 2018;67(4):114–122.
  • 7. Huckabe CE, Hahn AW. A generalized approach to the modeling of arterial blood flow. Bull Math Biophys. 1968;30(4):645–662. https://doi.org/10.1007/BF02476681
  • 8. Ellahi R, Rahman SU, Nadeem S, Akbar NS. Blood flow of nanofluid through an artery with composite stenosis and permeable walls. Appl Nanosci. 2014;4(8):919–926. https://doi.org/10.1007/s13204-013-0253-6
  • 9. Liepsch D, Singh M, Lee M. Experimental analysis of the influence of stenotic geometry on steady flow. Biorheology. 1992;29(4):419–431. https://doi.org/10.3233/bir-1992-29405
  • 10. Lowe GD, Drummond MM, Lorimer AR, Hutton I, Forbes CD, Prentice CR, et al. Relation between extent of coronary artery disease and blood viscosity. Br Med J. 1980;280(6215):673–674. https://doi.org/ 10. 1136/bmj.280.6215.673
  • 11. Baskurt OK, Meiselman HJ. Blood Rheology and Hemodynamics. Semin Thromb Hemost [Internet]. 2003 Nov 21 [cited 2021 Sep 11];29(05):435–450. Available from: https://doi.org/10.1055/s-2003-44551
  • 12. Gandhi R, Sharma BK. Unsteady MHD Hybrid Nanoparticle (Au-Al 2 O 3/Blood) Mediated Blood Flow Through a Vertical Irregular Stenosed Artery: Drug Delivery Applications. In: Nonlinear Dynamics and Applications: Proceedings of the ICNDA 2022. Springer; 2022;12(2):325–337. https://doi.org/10.1007/978-3-030-99792-2_28
  • 13. Sharma BK, Kumawat C, Vafai K. Computational biomedical simulations of hybrid nanoparticles (Au-Al2O3/blood-mediated) transport in a stenosed and aneurysmal curved artery with heat and mass transfer: Hematocrit dependent viscosity approach. Chem Phys Lett. 2022;800:139666. https://doi.org/10.1007/978-3-030-99792-2_34.
  • 14. Thamizharasan T, Reddy AS. Pulsating hydromagnetic flow of au-blood Jeffrey nanofluid in a channel with joule heating and viscous dissipation. Nanoscience and Technology: Nanosci Technol An Int J. 2022;13(2):1-13. https://doi.org/10.1615/NanoSciTechnolIntJ.2022039247
  • 15. Tripathi B, Sharma BK, Sharma M. Modeling and analysis of MHD two-phase blood flow through a stenosed artery having temperature-dependent viscosity. Eur Phys J Plus. 2019;134(1):466. https://doi.org/10.1140/epjp/i2019-12813-9
  • 16. Tripathi B, Sharma BK. Influence of heat and mass transfer on two-phase blood flow with joule heating and variable viscosity in the presence of variable magnetic field. Int J Comput Methods. 2020;17(03):1850139. https://doi.org/10.1142/S0219876218501396
  • 17. Tripathi B, Sharma BK. Two-phase analysis of blood flow through a stenosed artery with the effects of chemical reaction and radiation. Ric di Mat. 2021;3(2):1-7.
  • 18. Hayat T, Hussain Z, Alsaedi A, Hobiny A. Computational analysis for velocity slip and diffusion species with carbon nanotubes. Results Phys. 2017;7:3049–58. https://doi.org/10.1016/j.rinp.2017.07.070
  • 19. Hafeez MB, Krawczuk M, Shahzad H. An overview of heat transfer enhancement based upon nanoparticles influenced by induced magnetic field with slip condition via finite element strategy. acta Mech Autom. 2022;16(3):200–206. https://doi.org/10.2478/ama-2022-0024
  • 20. Eckert ERG, Drake Jr RM. Analysis of heat and mass transfer. MC Graw Hill Publishing;1974. https://doi.org/10.1016/j.rinp.2017.07.070
  • 21. Sharma BK, Yadav K, Mishra NK, Chaudhary RC. Soret and Dufour effects on unsteady MHD mixed convection flow past a radiative vertical porous plate embedded in a porous medium with chemical reaction. 2012; 3(7):717-723. https://doi.org/ 10.4236/am.2012.37105
  • 22. Sharma BK, Gupta S, Krishna VV, Bhargavi RJ. Soret and Dufour effects on an unsteady MHD mixed convective flow past an infinite vertical plate with Ohmic dissipation and heat source. Afrika Mat. 2014;25(3):799–821.
  • 23. Xiao X, Wu Z-C, Chou K-C. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PLoS One. 2011;6(6):e20592.
  • 24. Siddique I, Nadeem M, Awrejcewicz J, Pawłowski W. Soret and Dufour effects on unsteady MHD second-grade nanofluid flow across an exponentially stretching surface. Sci Rep. 2022;12(1):11811. https://doi.org/10.1038/s41598-022-16173-8
  • 25. Nowar K. Peristaltic flow of a nanofluid under the effect of Hall current and porous medium. Math Probl Eng. 2014;2014:1-15. https://doi.org/10.1155/2014/389581
  • 26. Nadeem S, Ijaz S, Akbar NS. Nanoparticle analysis for blood flow of Prandtl fluid model with stenosis. Int Nano Lett. 2013;3(1):1–13. https://doi.org/10.1186/2228-5326-3-35
  • 27. Su X, Zheng L. Hall effect on MHD flow and heat transfer of nanofluids over a stretching wedge in the presence of velocity slip and Joule heating. Cent Eur J Phys. 2013;11(12):1694–703. https://doi.org/10.2478/s11534-013-0331-0
  • 28. Ellahi R, Rahman SU, Nadeem S. Blood flow of Jeffrey fluid in a catherized tapered artery with the suspension of nanoparticles. Phys Lett A. 2014;378(40):2973–80. https://doi.org/10.1016/j.physleta.2014.08.002
  • 29. Ghandi R, Sharma BK, Kumawat C, Beg OA. Modeling and analysis of magnetic hybrid nanoparticle (Au-Al2O3/blood) based drug delivery through a bell-shaped occluded artery with Joule heating, viscous dissipation and variable viscosity effects. Proc Inst Mech Eng Part E J Process Mech Eng. 2022; 236(5):2024-43. https://doi.org/10.1177/09544089221080273
  • 30. Hayat T, Hussain Z, Alsaedi A, Muhammad T. An optimal solution for magnetohydrodynamic nanofluid flow over a stretching surface with constant heat flux and zero nanoparticles flux. Neural Comput Appl. 2018;29:1555–62. https://doi.org/10.1007/s00521-016-2685-x
  • 31. Bhandari A. Mathematical Modelling of Water-Based FeO Nanofluid Due to Rotating Disc and Comparison with Similarity Solution. acta Mech Autom. 2021;15(3):113–121. https://doi.org/10.2478/ama-2021-0016
  • 32. Hussain Z, Hayat T, Alsaedi A, Anwar MS. Mixed convective flow of CNTs nanofluid subject to varying viscosity and reactions. Sci Rep. 2021;11(1):22838. https://doi.org/10.1038/s41598-021-02228-9
  • 33. Hussain Z, Alshomrani AS, Muhammad T, Anwar MS. Entropy analysis in mixed convective flow of hybrid nanofluid subject to melting heat and chemical reactions. Case Stud inTherm Eng. 2022;34:101972. https://doi.org/10.1016/j.csite.2022.101972
  • 34. Miri R, Abbassi MA, Ferhi M, Djebali R. Second Law Analysis of MHD Forced Convective Nanoliquid Flow Through a Two-Dimensional Channel. acta Mech Autom. 2022;16(4):417–431. https://doi.org/10.2478/ama-2022-0050
  • 35. Cho HW, Hyun JM. Numerical solutions of pulsating flow and heat transfer characteristics in a pipe. Int J Heat Fluid Flow. 1990;11(4):321–330. https://doi.org/10.1016/0142-727X(90)90056-H
  • 36. Sharma BK, Gandhi R. Combined effects of Joule heating and non-uniform heat source/sink on unsteady MHD mixed convective flow over a vertical stretching surface embedded in a Darcy-Forchheimer porous medium. Propuls Power Res. 2022;11(2):276–292. https://doi.org/10.1016/j.jppr.2022.06.001
  • 37. Craciunescu OI, Clegg ST. Pulsatile blood flow effects on temperature distribution and heat transfer in rigid vessels. J Biomech Eng. 2001;123(5):500–505. https://doi.org/ 10.1115/1.1392318
  • 38. Naqvi SMRS, Farooq U, Aiyashi MA, Waqas H. Comprehensive analysis of thermally radiative transport of Sisko fluid over a porous stretchable curved surface with gold nanoparticles. Int J Mod Phys B. 2022;36(03):2250028. https://doi.org/10.1142/S021797922250028X
  • 39. Hussain Z. Heat transfer through temperature dependent viscosity hybrid nanofluid subject to homogeneous-heterogeneous reactions and melting condition: A comparative study. Phys Scr. 2020;96(1):15210. https://doi.org/10.1088/1402-4896/abc5ef
  • 40. Sharma BK, Kumawat C, Makinde OD. Hemodynamical analysis of MHD two phase blood flow through a curved permeable artery having variable viscosity with heat and mass transfer. Biomech Model Mechanobiol. 2022;21(3):797–825. https://doi.org/10.1007/s10237-022-01561-w
  • 41. Sharma BK, Kumawat C. Impact of temperature dependent viscosity and thermal conductivity on MHD blood flow through a stretching surface with ohmic effect and chemical reaction. Nonlinear Eng. 2021;10(1):255–271. https://doi.org/10.1515/nleng-2021-0020
  • 42. Chakravarty S, Mandal PK. Mathematical modelling of blood flow through an overlapping arterial stenosis. Math Comput Model. 1994;19(1):59–70. https://doi.org/10.1016/0895-7177(94)90116-3
  • 43. Chakravarty S, Mandal P. A nonlinear two-dimensional model of blood flow in an overlapping arterial stenosis subjected to body acceleration. Math Comput Model. 1996;24(1):43–58. https://doi.org/10.1016/0895-7177(96)00079-9
  • 44. Nadeem S, Ijaz S. Theoretical analysis of metallic nanoparticles on blood flow through stenosed artery with permeable walls. Phys Lett A. 2015;379(6):542–554. https://doi.org/10.1016/j.physleta.2014.12.013
  • 45. Datta BN. Numerical linear algebra and applications: Siam. 2010; 116. https://www.mdpi.com/journal/mathematics/special issues/ numelinear algebra
  • 46. Sharma BK, Gandhi R, Mishra NK, Al-Mdallal QM. Entropy generation minimization of higher-order endothermic/exothermic chemical reaction with activation energy on MHD mixed convective flow over a stretching surface. Sci Rep. 2022;12(1):17688. https://doi.org/10.1038/s41598-022-22521-5
  • 47. Sharma BK, Poonam, Chamkha AJ. Effects of heat transfer, body acceleration and hybrid nanoparticles (Au–Al2O3) on MHD blood flow through a curved artery with stenosis and aneurysm using hematocrit-dependent viscosity. Waves in Random and Complex Media. 2022;2(3):1–31. https://doi.org/10.1080/17455030.2022.2125597
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21338ddb-110e-489f-9126-d454d6e196b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.