PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Design of fuzzy dynamic decoupler for a class of two-inputs two-outputs nonlinear systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the problem of designing a dynamic decoupler for a class of two-inputs two-outputs nonlinear MIMO systems with experimentally modeled dynamics. The work describes the well-known linear theory of dynamic decoupling of TITO plants and discusses problems related to its application to nonlinear systems. The solution of constructing a fuzzy dynamic decoupler with two possible approaches is proposed. The paper gives a practical example of the synthesis of such a system for the air heater, which is an example of nonlinear thermal plant.
Rocznik
Strony
art. no. e152218
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Poland
Bibliografia
  • [1] P. Dworak, “About dynamic decoupling of a nonlinear MIMO dynamic plant,” in 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), 2014, pp. 106–111, doi: 10.1109/MMAR.2014.6957333.
  • [2] P. Dworak, “A Type of Fuzzy T-S Controller for a Nonlinear MIMO Dynamic Plant,” Elektron. Elektrotech., vol. 20, pp. 8–14, 2014.
  • [3] P. Dworak, “Squaring down plant model and I/O grouping strategies for a dynamic decoupling of left-invertible MIMO plants,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 62, no. 3, pp. 471–479, 2014, doi: 10.2478/bpasts-2014-0050.
  • [4] J. Garrido, F. Vázquez, and F. Morilla, “Centralized inverted decoupling for TITO processes,” in 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010), 2010, pp. 1–8, doi: 10.1109/ETFA.2010.5641287.
  • [5] M. Hamdy, A. Ramadan, and B. Abozalam, “Comparative study of different decoupling schemes for TITO binary distillation column via PI controller,” IEEE/CAA J. Autom. Sin., vol. 5, no. 4, pp. 869–877, 2018, doi: 10.1109/JAS.2016.7510040.
  • [6] X. Li, Y. Bai, and K. Zhang, “Dynamic Decoupling of the MIMO System Based on the Elman Net,” in 2008 International Symposium on Computational Intelligence and Design, vol. 1, 2008, pp. 537–540, doi: 10.1109/ISCID.2008.181.
  • [7] P. Dworak and K. Pietrusewicz, “A variable structure controller for the MIMO thermal plant,” Prz. Elektrotechniczny, vol. 86, no. 6, pp. 116–119, 2010.
  • [8] S.R. Mahapatro, B. Subudhi, S. Ghosh, and P. Dworak, “A comparative study of two decoupling control strategies for a coupled tank system,” in 2016 IEEE Region 10 Conference (TENCON), 2016, doi: 10.1109/TENCON.2016.7848695.
  • [9] M.G. Bulut and F.N. Deniz, “Computation of Stabilizing Decentralized PI Controllers for TITO Systems with Simplified and Inverted Decoupling,” in 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE), 2020, pp. 294–298, doi: 10.1109/ICEEE49618.2020.9102547.
  • [10] V.D. Hajare and B.M. Patre, “Decentralized PID controller for TITO systems using characteristic ratio assignment with an experimental application,” ISA Trans., vol. 59, pp. 385–397, 2015.
  • [11] M. Ben Hariz and F. Bouani, “Design of controllers for decoupled TITO systems using different decoupling techniques,” in 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), 2015, pp. 1116–1121, doi: 10.1109/MMAR.2015.7284035.
  • [12] S. Król and P. Dworak, “An Application of the Dynamic Decoupling Techniques for a Nonlinear TITO Plant,” in Advanced, Contemporary Control, M. Pawelczyk, D. Bismor, S. Ogonowski, and J. Kacprzyk, Eds. Cham: Springer Nature Switzerland, 2023, pp. 381–392.
  • [13] Z. Li and Y. Chen, “Ideal, Simplified and Inverted Decoupling of Fractional Order TITO Processes,” IFAC Proc. Vol., vol. 47, no. 3, pp. 2897–2902, 2014, 19th IFAC World Congress.
  • [14] S.K. Lokesh, S. Sharma, and P.K. Padhy, “Study of Different Decoupling Techniques for TITO Time-delay System,” in 2021 International Conference on Control, Automation, Power and Signal Processing (CAPS), 2021, pp. 1–6, doi: 10.1109/CAPS52117.2021.9730644.
  • [15] H. Mokadam, B. Patre, and D. Maghade, “Tuning of multivariable PI/PID controllers for TITO processes using dominant pole placement approach,” Int. J. Autom. Control, vol. 7, pp. 21–41, 2013.
  • [16] M. Noeding, J. Martensen, N. Lemke, W. Tegethoff, and J. Koehler, “Selection of Decoupling Control Methods Suited for Automated Design for Uncertain TITO Processes,” in 2018 IEEE 14th International Conference on Control and Automation (ICCA), 2018, pp. 498–505, doi: 10.1109/ICCA.2018.8444216.
  • [17] A. Sharma and P. K. Padhy, “Design and implementation of PID controller for the decoupled two input two output control process,” in 2017 4th International Conference on Power, Control & Embedded Systems (ICPCES), 2017, pp. 1–6, doi: 10.1109/ICPCES.2017.8117666.
  • [18] S. Tavakoli, I. Griffin, and P.J. Fleming, “Tuning of decentralised PI (PID) controllers for TITO processes,” Control Eng. Pract., vol. 14, no. 9, pp. 1069–1080, 2006.
  • [19] M. Chen, S. Cui, H. Duan, J. Liu, and Y. Liu, “Study on Decoupling Control System of Temperature and pH Concentration in Photoreactive Biological Apparatus,” in 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), 2020, pp. 1405–1408, doi: 10.1109/ITOEC49072.2020.9141579.
  • [20] Q. Chen, Y. Wang, Z. Xu, X. Chen, T. Zhang, and Y. Zhang, “Modeling, Simulation and Decoupling Control of Resistance Furnace Using MATLAB and Simulink,” in 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE), 07 2021, pp. 472–476.
  • [21] S. Álvarez de Miguel, J.G. Mollocana Lara, C.E. García Cena, M. Romero, J.M. García de María, and J. Gonzaler Aguilar, “Identification model and PI and PID controller design for a novel electric air heater,” Autom. J. Control Meas. Electron. Comput. Commun., vol. 58, no. 1, pp. 55–68, 2017, doi: 10.1080/00051144.2017.1342958.
  • [22] T.J. Ross, Fuzzy Logic with Engineering Applications. The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England: John Wiley & Sons Ltd, 2004, doi: 10.1002/9781119994374.
  • [23] C. Karr and E. Gentry, “Fuzzy control of pH using genetic algorithms,” IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 46–, 1993, doi: 10.1109/TFUZZ.1993.390283.
  • [24] M. Lee and H. Takagi, “Integrating design stage of fuzzy systems using genetic algorithms,” in [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems, vol. 1, 1993, pp. 612–617, doi: 10.1109/FUZZY.1993.327418.
  • [25] J. Liska and S. Melsheimer, “Complete design of fuzzy logic systems using genetic algorithms,” in Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference, vol. 2, 1994, pp. 1377–1382, doi: 10.1109/FUZZY.1994.343611.
  • [26] M. Abdollahi, A. Isazadeh, and D. Abdollahi, “Imperialist competitive algorithm for solving systems of nonlinear equations,” Comput. Math. Appl., vol. 65, no. 12, pp. 1894–1908, 2013.
  • [27] F. Razavi and B. Ghadiri, “Imperialist Competitive Algorithm (ICA)-optimized PI speed control in the Indirect Field-Oriented Control of an IM drive,” in 2011 IEEE Colloquium on Humanities, Science and Engineering, 2011, pp. 445–448, doi: 10.1109/CHUSER.2011.6163770.
  • [28] Y. Tang and F. Zhou, “An improved imperialist competition algorithm with adaptive differential mutation assimilation strategy for function optimization,” Expert Syst. Appl., vol. 211, p. 118686, 2023.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-212dfa65-9518-47c0-bfe5-422502184f4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.