PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and simulation of high purity biodiesel reactive distillation process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Biodiesel is a promising energy substitute of fossil fuels since it is produced from renewable and biodegradable sources. In the present work, reactive distillation (RD) process is designed and simulated using Aspen Plus process simulator to produce biodiesel of high purity through esterification reaction. The simultaneous reaction and separation in same unit enhances the biodiesel yield and composition in RD process. Two flowsheets are proposed in present work. In the first flowsheet, the unreacted methanol is recycled back to reactive distillation column. Biodiesel with 99.5 mol% purity is obtained in product stream while the byproduct stream comprises 95.2 mol% water, which has to be treated further. In the second flowsheet, a part of methanol recycle is split and purged. In this case, the biodiesel composition in product stream is 99.7 mol% whereas water composition is 99.9 mol% in byproduct stream, which can be reused for other process without treatment.
Słowa kluczowe
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, 31982, Saudi Arabia
  • Department of Chemical Engineering, 11421, Riyadh, Saudi Arabia
autor
  • Department of Chemical Engineering, 31982, Saudi Arabia
Bibliografia
  • 1. Hosseinzadeh-Bandbafha, H., Tabatabaei, M., Aghbashlo, M., Khanali, M. & Demirbas, A. (2018). A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Convers. Manage. 174, 579–614.
  • 2. Veljković, V.B., Biberdžić, M.O., Banković-Ilić, I.B., Djalović, I.G., Tasić, M.B., Nježić, Z.B. & Stamenković, O.S. (2018). Biodiesel production from corn oil: A review. Renewable Sustainable Energy Rev. 91, 531–548.
  • 3. Atadashi, I.M., Aroua, M.K. & Aziz, A.A. (2011). Biodiesel separation and purifi cation: A review. Renewable Energy 36(2), 437–443.
  • 4. Thangaraj, B., Solomon, P.R., Muniyandi, B., Ranganathan, S. & Lin, L. (2018). Catalysis in biodiesel production—a review. Clean Energy 10.1093/ce/zky020, zky020-zky020.
  • 5. Bateni, H., Saraeian, A., Able, C. & Karimi, K. (2019). Biodiesel Purifi cation and Upgrading Technologies In M. Tabatabaei & M. Aghbashlo (Eds), Biodiesel: From Production to Combustion (pp. 57–100). Basel. Switzerland: Springer, Cham.
  • 6. Ambat, I., Srivastava, V. & Sillanpää, M. (2018). Recent advancement in biodiesel production methodologies using various feedstock: A review. Renewable Sustainable Energy Rev. 90, 356–369.
  • 7. Ali, S.S., Hossain, S.S. & Asif, M. (2017). Dynamic modeling of the isoamyl acetate reactive distillation process. Pol. J. Chem. Technol. 19(1), 59.
  • 8. Tuchlenski, A., Beckmann, A., Reusch, D., Düssel, R., Weidlich, U. & Janowsky, R. (2001). Reactive distillation — industrial applications, process design & scale-up. Chem. Eng. Sci. 56(2), 387–394.
  • 9. Estrada-Villagrana, A.D., Quiroz-Sosa, G.B., Jiménez-Alarcón, M.L., Alemán-Vázquez, L.O. & Cano-Domínguez, J.L. (2006). Comparison between a conventional process and reactive distillation for naphtha hydrodesulfurization. Chem. Eng. Process. Process Intensif. 45(12), 1036–1040.
  • 10. Guo, B. & Li, Y. (2012). Analysis and simulation of reactive distillation for gasoline alkylation desulfurization. Chem. Eng. Sci. 72, 115–125.
  • 11. Hasabnis, A. & Mahajani, S. (2014). Acetalization of Glycerol with Formaldehyde by Reactive Distillation. Ind. Eng. Chem. Res. 53(31), 12279–12287.
  • 12. Chandrakar, A., Agarwal, V., Chand, S. & Wasewar, K.L. (2007). Modeling and Simulation of Catalytic Distillation Column for Esterifi cation of Acetic Acid with Methanol. Int. J. Chem. Reactor Eng. 5(1), 481.
  • 13. Kiss, A.A. (2011). Heat-integrated reactive distillation process for synthesis of fatty esters. Fuel Process. Technol. 92(7), 1288–1296.
  • 14. Agarwal, M., Singh, K. & Chaurasia, S.P. (2012). Simulation and sensitivity analysis for biodiesel production in a reactive distillation column. Pol. J. Chem. Technol. 14(3), 59.
  • 15. Nguyen, N. & Demirel, Y. (2011). Using thermally coupled reactive distillation columns in biodiesel production. Energy 36(8), 4838-4847.
  • 16. Poddar, T., Jagannath, A. & Almansoori, A. (2017). Use of reactive distillation in biodiesel production: A simulation-based comparison of energy requirements and profitability indicators. Appl. Energ. 185, 985–997.
  • 17. Kianimanesh, H.R., Abbaspour-Aghdam, F. & Derakhshan, M.V. (2017). Biodiesel production from vegetable oil: Process design, evaluation and optimization. Pol. J. Chem. Technol. 19(3), 49.
  • 18. Kiss, A.A., Omota, F., Dimian, A.C. & Rothenberg, G. (2006). The heterogeneous advantage: biodiesel by catalytic reactive distillation. Top. Catal. 40(1), 141–150.
  • 19. Machado, G.D., de Souza, T.L., Aranda, D.A.G., Pessoa, F.L.P., Castier, M., Cabral, V.F. & Cardozo-Filho, L. (2016). Computer simulation of biodiesel production by hydro-esterifi cation. Chem. Eng. Process. Process Intensif. 103, 37–45.
  • 20. Bildea, C.S. & Kiss, A.A. (2011). Dynamics and control of a biodiesel process by reactive absorption. Chem. Enginee. Res. Des. 89(2), 187–196.
  • 21. Dimian, A.C., Bildea, C.S., Omota, F. & Kiss, A.A. (2009). Innovative process for fatty acid esters by dual reactive distillation. Comput. Chem. Eng. 33(3), 743–750.
  • 22. Pérez-Cisneros, E.S., Mena-Espino, X., Rodríguez-López, V., Sales-Cruz, M., Viveros-García, T. & Lobo-Oehmichen, R. (2016). An integrated reactive distillation process for biodiesel production. Comput. Chem. Eng. 91, 233–246.
  • 23. Gomez-Castro, F.I., Rico-Ramirez, V., Segovia-Hernandez, J.G. & Hernandez, S. (2010). Feasibility study of a thermally coupled reactive distillation process for biodiesel production. Chem. Eng. Process. Process Intensif. 49(3), 262–269.
  • 24. Luyben, W.L. (2000). Economic and Dynamic Impact of the Use of Excess Reactant in Reactive Distillation Systems. Ind. Eng. Chem. Res. 39(8), 2935–2946.
  • 25. Luyben, W.L. & Yu, C.C. (2008). Reactive Distillation Design and Control (1st ed.). Hoboken, New Jersey, United States: John Wiley & Sons.
  • 26. Santori, G., Di Nicola, G., Moglie, M. & Polonara, F. (2012). A review analyzing the industrial biodiesel production practice starting from vegetable oil refi ning. Appl. Energ. 92, 109–132.
  • 27. Kiss, A.A., Dimian, A.C. & Rothenberg, G. (2006). Solid Acid Catalysts for Biodiesel Production – Towards Sustainable Energy. Adv. Synth. Catal. 348(1–2), 75–81.
  • 28. Kiss, A.A., Dimian, A.C. & Rothenberg, G. (2008). Biodiesel by Catalytic Reactive Distillation Powered by Metal Oxides. Energy Fuels 22(1), 598–604.
  • 29. Elliott, J.R. & Lira, C.T. (2012). Introductory Chemical Engineering Thermodynamics (2nd ed.). New Jersey, United States: Prentice Hall.
  • 30. Omota, F., Dimian, A.C. & Bliek, A. (2003). Fatty acid esterifi cation by reactive distillation. Part 1: equilibrium-based design. Chem. Eng. Sci. 58(14), 3159–3174.
  • 31. Babbitt, C.W., Pacheco, A. & Lindner, A.S. (2009). Methanol removal effi ciency and bacterial diversity of an activated carbon biofi lter. Bioresour. Technol. 100(24), 6207–6216.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-212c733d-906b-4eb5-8c45-8efece9dde53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.