PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of tail probabilities of strictly semistable/stable random vectors and their symmetrized counterparts with application

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is shown that the tail probabilities of a strictly (r, a)-semistable (0 < r < 1, 0 < α < 2, α ≠ 1) Banach space valued random vector X and its symmetrized counterpart are ”uniformly” comparable in the sense that the constants appearing in the inequalities depend only on r and α (and not on X or the Banach space). Using this and some other known facts, several corollaries related to the moment inequalities of the random vector X and its symmetrized counterpart are obtained. The corresponding results for strictly α-stable Banach space valued random vectors, α ≠ 1, are also derived and discussed.
Słowa kluczowe
Rocznik
Strony
367--379
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Department of Mathematics, University of Tennessee, Knoxville, TN 37996
  • Indian Statistical Institute, Bangalore, India
Bibliografia
  • [1] A. Araujo and E. Giné, The CLT for Real and Banach Valued Random Variables, Wiley, New York 1980.
  • [2] D. M. Chung, B. S. Rajput and A. Tortrat, Semi-stable laws on topological vector spaces, Z. Wahrsch. Verw. Gebiete 60 (1982), pp. 209-218.
  • [3] E. Giné, M. B. Marcus and J. Zinn, A version of Chevet's Theorem for stable processes, J. Funct. Anal. 63 (1985), pp. 47-73.
  • [4] W. Krakowiak, Operator semistable probability measures on Banach spaces, Colloq. Math. 43 (1980), pp. 351-363.
  • [5] M. Lewandowski, M. Ryzner and T. Zak, Stable measure of a small ball, Proc. Amer. Math. Soc. 2 (1992), pp. 489-494.
  • [6] W. Linde, Probability in Banach Spaces, Wiley, New York 1986.
  • [7] B. S. Rajput, An estimate of the semistable measure of small balls in Banach spaces, in: Stochastic Processes and Functional Analysis, J. Goldstein et al. (Eds.), Dekker, New York, NY, 1997, pp. 171-178.
  • [8] B. S. Rajput and K. Rama-Murthy, Spectral representations of semi-stable processes, and semi-stable laws on Banach spaces, J. Multivariate Anal. 21 (1987), pp. 141-159.
  • [9] B. S. Rajput, K. Rama-Murthy and X. R. Retnam, Moment comparison of multilinear forms in stable and semi-stable random variables with application to semi-stable multiple integrals, in: Stochastic Processes and Related Topics (In memory of Stamatis Cambanis), I. Karatzas, B. S. Rajput, and M. S. Taqqu (Eds.], Birkhäuser, Boston, MA, 1998, pp. 339-355.
  • [10] B. S. Rajput and J. Rosiński, Spectral representations of infinitely divisible processes, Probab. Theory Related Fields 82 (1989), pp. 451-487.
  • [11] J. Rosiński, On series representation of infinitely divisible random vectors, Ann. Probab. 18 (1990), pp. 405-430.
  • [12] G. Samorodnitsky and M. Taqqu, Stable Nan-Gaussian Random Processes, Chapman and Hall, New York, NY, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21298445-8331-4aee-95ca-06e52175a39b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.