PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advanced Oxidation Treatment of Composting Leachate of Food Solid Waste by Ozone-Hydrogen Peroxide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research was conducted to investigate the efficiency and possibilities of advanced oxidation process based on ozone-hydrogen peroxide. The process was used as a post-treatment step of composting leachate utilisation. The leachate samples were collected from a typical composting plant with the aerobic biological treatment system. The samples were conditioned in a “ozone reactor” without dilution. The effectiveness of the treatment process was measured by pH values (4.0-7.0), H2O2 concentrations (0.5-4.0 g∙dm-3), ozone doses (0.5-1.5 g∙h-1) and reaction times (0-10 min). The highest removal efficiencies achieved were 85% and 92% for chemical oxygen demand (COD) and biochemical oxygen demand (BOD5), respectively. The optimum process parameters occurred at pH 5.0, 2.0 g∙dm-3 concentration of H2O2, and 0.75 g∙h-1 of ozone dose. The optimal reaction time was 3 min. The O3/ H2O2 advanced oxidation process was found to oxidize COD and BOD5 of the composting leachate. The oxidation reaction can be used as a feasible technique for composting leachate treatment.
Słowa kluczowe
EN
BOD5   COD   oxidation   compost   leachate  
Rocznik
Strony
203--208
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
autor
  • University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. Benlboukht F., Lemee L., Amir S., Ambles A., Hafidi M. 2016. Biotransformation of organic matter during composting of solid wastes from traditional tanneries by thermochemolysis coupled with gas chromatography and mass spectrometry. Ecological Engineering, 90, 87–95.
  • 2. Carlsson M., Lagerkvist A., Morgan-Sagastume F. 2012. The effects of substrate pretreatment on anaerobic digestion: a review. Waste Management, 32, 1634–1650.
  • 3. Cortez S., Teixeira P., Oliveira R., Mota M. 2011. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pretreatments. Journal of Environmental Management, 92, 749–755.
  • 4. DIN EN 1899 H55. 1998. Water quality – Determination of biochemical oxygen demand after n days (BODn) – Part 2: Method for undiluted samples. International Organization for Standardization.
  • 5. Fernández C., Mateu C., Moral R., Sole-Mauri F., 2016. A predictor model for the composting process on an industrial scale based on Markov processes. Environmental Modelling & Software, 79, 156–166.
  • 6. Food and Agricultural Organization. 2011. Global Food Losses and Food Waste – Study Conducted for the International Congress. Swedish Institute for Food and Biotechnology.
  • 7. Goi A., Veressinina Y., Trapido M. 2009. Combination of ozonation and the Fenton processes for landfill leachate treatment: Evaluation of treatment efficiency. Ozone: Science & Engineering, 31, 28–36.
  • 8. Hagman M., Heander E., Jansen J.L. 2008. Advanced oxidation of refractory organics in leachate – Potential methods and evaluation of biodegradability of the remaining substrate. Environmental Technology, 29, 941–946.
  • 9. Jia C., Wang Y., Zhang C., Qin Q. 2011. UV-TiO2 photocatalytic degradation of landfill leachate. Water, Air, & Soil Pollution, 217, 375–385.
  • 10. Jinyi G., Guangqun H., Jing H., Jianfei Z., Lujia H. 2016. Manure–wheat straw composting: A new approach that considers surface convection. International Journal of Heat and Mass Transfer, 97, 735–741.
  • 11. Junya Z., Meixue Ch., Qianwen S., Juan T., Chao J., Xueting L., Yuxiu Z., Yuansong W. 2016. Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting. Water Research, 91, 339–349.
  • 12. Lebrero R., Rodríguez E., García-Encina P., A., Muñoz R. 2011. A comparative assessment of biofiltration and activated sludge diffusion for odour abatement. Journal of Hazardous Materials, 190(1–3), 622–630.
  • 13. Lian Y., Shihua Z., Zhigiang Ch., Qinxue W., Yao W. 2016. Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge. Bioresource Technology, 204, 185–191.
  • 14. Liu H., Liang M.Y., Liu C.S., Gao Y.X., Zhou J.M. 2009. Catalytic degradation of phenol in sonolysis by coal ash and O3/H2O2. Chemical Engineering Journal, 153, 131–137.
  • 15. Maniero M.G., Bila D.M., Dezotti M. 2008. Degradation and estrogenic activity removal of 17betaestradiol and 17alpha-ethinylestradiol by ozonation and O3/H2O2. Science of the Total Environment, 407, 105–115.
  • 16. Mukesh K.A., Akhilesh K.P., Pushpendra S.B., Wong W.C., Li R., Zengqiang Z. 2016. Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium. Bioresource Technology, 213, 181–189.
  • 17. Pichtel J. 2010. Waste Management Practices: Municipal, Hazardous, and Industrial, second edition. Taylor and Francis, New York.
  • 18. PN-ISO 15705. 2002. Water quality – Determination of the chemical oxygen demand index (ST-COD) – Small-scale sealed-tube method. International Organization for Standardization.
  • 19. Qiang Z., Liu C., Dong B., Zhang Y. 2010. Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation process. Chemosphere, 78, 517–526.
  • 20. Rivas F.J., Beltrán F., Gimeno O., Acedo B., Carvalho F. 2003. Stabilized leachates: Ozone-activated carbon treatment and kinetics. Water Research, 37, 4823–4834.
  • 21. Rosal R., Rodríguez A., Perdigón-Melón J.A., Petre A., García-Calvo E., 2009. Oxidation of dissolved organic matter in the effluent of a sewage treatment plant using ozone combined with hydrogen peroxide (O3/H2O2). Chemical Engineering Journal, 149, 311–318.
  • 22. Siles J.A., Vargas F., Gutiérrez M.C., Chica A.F., Martín M.A. 2016. Integral valorisation of waste orange peel using combustion, biomethanisation and co-composting technologies. Bioresource Technology, 211, 173–182.
  • 23. Tizaoui C., Bouselmi L., Mansouri L., Ghrabi A. 2007. Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of Hazardous Materials, 140, 316–324.
  • 24. Williams P.T. 2005. Waste Treatment and Disposal. John Wiley and Sons, second edition, Great Britain.
  • 25. Yongjiang W., Li P., Xinyu L., Yuansheng W., Kexun Z., Fei L. 2016. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor. Bioresource Technology, 206, 164–172.
  • 26. Yuan J., Yang Q., Zhang Z., Li G., Luo W., Zhang D. 2015. Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting. Journal of Environmental Sciences, 37, 83–90.
  • 27. Zaman A.U. 2013. Identification of waste management development drivers and potential emerging waste treatment technologies. International Journal of Environmental Science and Technology, 10(3), 455–464.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2122adf2-8a42-4708-9e35-8e6b5936ed49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.