PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Remediation of laundry wastewater with a low-pressure aromatic polyamide thin-film composite reverse osmosis membrane for membrane fouling minimisation and reuse application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In areas with limited freshwater resources, affordable technologies can remediate greywater for reuse applications and increase the water supply. These wastewaters contain various chemicals, which make them challenging to treat. Reverse osmosis (RO) membrane systems could be the solution to removing these harmful chemicals. Membrane fouling has been investigated and using a commercial antiscalant to treat laundry wastewater effluent with a polyamide (PA) thin-film composite (TFC) reverse osmosis membrane. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM) were used to assess the antiscalant effects. The anionic surfactant rejection was above 99.8% for experimental tests conducted. The average COD removal rate was in the range of 91-96%, irrespective of the antiscalant dosing. However, the presence of antiscalant at the dose of 8 mg/dm3 significantly reduced fouling intensity. The flux decline ratio amounted to 56 and 72% for the RO process with antiscalant and no antiscalant dosing, respectively.
Rocznik
Strony
43--57
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Environmental Engineering Research Group, Department of Chemical Engineering, Cape Peninsula University of Technology, Chemical Engineering Building, Bellville, Cape Town, Republic of South Africa
autor
  • Environmental Engineering Research Group, Department of Chemical Engineering, Cape Peninsula University of Technology, Chemical Engineering Building, Bellville, Cape Town, Republic of South Africa
  • Environmental Engineering Research Group, Department of Chemical Engineering, Cape Peninsula University of Technology, Chemical Engineering Building, Bellville, Cape Town, Republic of South Africa
Bibliografia
  • [1] GUPPY L., ANDERSON K., Water crisis report, United Nations University Institute for Water, Environment and Health, Hamilton, Canada, 2017.
  • [2] AZIZ M., OJUMU T., Exclusion of estrogenic and androgenic steroid hormones from municipal membrane bioreactor wastewater using UF/NF/RO membranes for water reuse application, Membranes, 2020, 10 (3), 37. DOI: 10.3390/membranes10030037.
  • [3] ABRAHAMS M., AZIZ M., KASONGO G., Investigating the effects of different cationic charge flocculation polymers on municipal wastewater sludge dewatering, Water Pract. Technol., 2021, 16 (3), 991–999. DOI: 10.2166/wpt.2021.046.
  • [4] AZIZ M., KASONGO G., Improving resistance to fouling of aromatic polyamide thin-film composite reverse osmosis membrane by surface grafting of N, N′-dimethyl aminoethyl methacrylate (DMAEMA), J. Water Chem. Technol., 2021, 43 (4), 312–320. DOI: 10.3103/s1063455x21040020.
  • [5] MYBURGH D.P., AZIZ M., ROMAN F., JARDIM J., CHAKAWA S., Removal of COD from industrial biodiesel wastewater using an integrated process. Electrochemical oxidation with IrO2-Ta2O5/Ti anodes and chitosan powder as an adsorbent, Environ. Proc., 2019, 6 (4), 819–840. DOI: 10.1007 s40710-019-00401-x.
  • [6] BODDU V.M., PAUL T., PAGE M.A., BYL C., WARD L., RUAN J., Gray water recycle. Effect of pretreatment technologies on low-pressure reverse osmosis treatment, J. Environ. Chem. Eng., 2016, 4 (4), 4435– 4443. DOI: 10.1016/j.jece.2016.09.031.
  • [7] MANOUCHEHRI M., KARGARI A., Water recovery from laundry wastewater by the cross-flow microfiltration process. A strategy for water recycling in residential buildings, J. Clean. Prod., 2017, 168, 227–238. DOI: 10.1016/j.jclepro.2017.08.211.
  • [8] BRAGA J.K., VARESCHE M.B.A., Commercial laundry water characterisation, Am. J. Anal. Chem., 2014, 5 (1), 8–16. DOI: 10.4236/ajac.2014.51002.
  • [9] LI F., WICHMANN K., OTTERPOHL R., Review of the technological approaches for greywater treatment and reuses, Sci. Total Environ., 2009, 407 (11), 3439–3449. DOI: 10.1016/j.scitotenv.2009.02.004.
  • [10] SHAFI H.Z., MATIN A., AKHTAR S., GLEASON K.K., ZUBAIR S.M., KHAN Z., Organic fouling in surface-modified reverse osmosis membranes. Filtration studies and subsequent morphological and compositional characterization, J. Memb. Sci., 2017, 527, 152–163. DOI: 10.1016/j.memsci. 2017.01.017.
  • [11] AZIZ M., KASONGO G., Scaling prevention of thin-film composite polyamide reverse osmosis membranes by Zn ions, Desalin., 2019, 464, 76–83. DOI: 10.1016/j.desal.2019.04.021.
  • [12] GOLDIE I., AZIZ M., ABOZRIDA A.H., SANDERSON R.D., Anti-scaling studies on high CaCO3 waters in spiral-wrap membrane systems, Technical report, WRC Report No. 1593/1/08, Cape Peninsula University of Technology, 2008.
  • [13] GOLDIE I., AZIZ M., PETERSEN M., MCLACHLAN D., Evaluation of scaling prevention in reverse osmosis membranes by anodic zinc addition and magnetic fields, Technical report, KV 239-10, South African Water Research Commission, 2010, http://hdl.handle.net/11189/6589
  • [14] KASONGO G., STEENBERG C., MORRIS B., KAPENDA G., JACOBS N., AZIZ M., Surface grafting of polyvinyl alcohol (PVA) cross-linked with glutaraldehyde (GA) to improve resistance to fouling of aromatic polyamide thin-film composite reverse osmosis membranes using municipal membrane bioreactor effluent, Water Pract. Technol., 2019, 14 (3), 614–624. DOI: 10.2166/wpt.2019.047.
  • [15] ANTONY A., HOW J., GRAY S., CHILDRESS A.E., LE-CLECH P., LESLIE G., Scale formation and control in high pressure membrane water treatment systems. A review, J. Membr. Sci., 2011, 383, 1–16. DOI: 10.1016/j.memsci.2011.08.054.
  • [16] SAQIB J., ALJUNDI I.H., Membrane fouling and modification using surface treatment and layer-by-layer assembly of polyelectrolytes. State-of-the-art review, J. Water Proc. Eng., 2016, 11 68–87. DOI: 10.1016/j.jwpe.2016.03.009.
  • [17] BRUURSEMA T., The new NSF 350 and 350-1, These American National Standards help in evaluating and approving water reuse treatment technologies, Plumb. Syst. Des., October 2011, 15–22.
  • [18] WARD L., PAGE M., JUREVIS J., NELSON A., RIVERA M., HERNANDEZ M., CHAPPELL M., DUSENBURY J.,Assessment of biologically active GAC and complementary technologies for greywater treatment, J. Water Reuse Desalin., 2015, 5 (3), 239–249. DOI: 10.2166/wrd.2015.088.
  • [19] ZHANG Q., ZHANG C., XU J., NIE Y., LI S., ZHANG S., Effect of poly(vinyl alcohol) coating process conditions on the properties and performance of polyamide reverse osmosis membranes, Desalin., 2016, 379, 42–52. DOI: 10.1016/j.desal.2015.10.012.
  • [20] WEI X., WANG Z., ZHANG Z., WANG J., WANG S., Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5,5-dimethylhydantoin, J. Memb. Sci., 2010, 351, 222–233. DOI: 10.1016/j.memsci.2010.01.054.
  • [21] ASADOLLAHI M., BASTANI D., MUSAVI S.A., Enhancement of surface properties and performance of reverse osmosis membranes after surface modification. A review, Desalin., 2017, 420, 330–383. DOI: 10.1016/j.desal.2017.05.027.
  • [22] GE J., QU J., LEI P., LIU H., New bipolar electrocoagulation-electroflotation process for the treatment of laundry wastewater, Sep. Purif. Technol., 2004, 36 (1), 33–39. DOI: 10.1016/S1383-5866(03)00150-3.
  • [23] MATIN A., RAHMAN F., SHAFI H.Z., ZUBAIR S.M., Scaling of reverse osmosis membranes used in water desalination: Phenomena, impact, and control; future directions, Desalin., 2019, 455, 135–157. DOI: 10.1016/j.desal.2018.12.009.
  • [24] CIABATTIA I., CESARO F., FARALLI L., FATARELLA E., TOGNOTTI F., Demonstration of a treatment system for purification and reuse of laundry wastewater, Desalin., 2009, 245, 451–459. DOI: 10.1016/j.desal.2009.02.008.
  • [25] AZIZ M., KASONGO G., The removal of selected inorganics from municipal membrane bioreactor wastewater using UF/NF/RO membranes for water reuse application. A pilot-scale study, Membr., 2021, 11 (2), 117. DOI: 10.3390/membranes11020117.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21221e43-820f-4be9-8bfa-74d35c737a9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.