PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Separation of split shear waves based on a hodogram analysis of HTI media

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although the shear-wave birefringence phenomenon affects the imaging of converted shear waves, it also provides a considerable amount of information on subsurface fracture development. Therefore, it is significant to separate split shear waves before seismic interpretation and reservoir prediction. In this paper, we propose a new method of split shear waves separation based on the polarization directions derived from hodogram analysis. Through the hodogram analysis, we find that the split shear-wave particle motions are within the range of a specific and fixed rectangle, which have relations with the fracture azimuth in strata. In addition, we found that a couple of split shear waves can only be fitted to the unique trajectory rectangle through the theoretical derivation. Based on this, we establish the trajectory rectangle through the wave vector calculation and calculate the fracture azimuth according to the fact that the one edge of the trajectory rectangle is along or perpendicular to the fracture azimuth. Synthetic data analysis shows that the calculation accuracy of fracture azimuth under the constraint of trajectory rectangle is less affected by the time delay between split shear waves than using the method of eigenvector–eigenvalue decomposition (EED). Therefore, we can obtain better results for separation of split shear waves using our method than using EED. Eventually, we propose an approach of layer stripping to deal with the problem that shear wave split several times due to the situation that different strata have different fracture azimuths. Synthetic data test indicates that our method can achieve higher calculation efficiency and faster convergence speed than the conventional eigenvector–eigenvalue decomposition method, even though the data are of a low signal-to-noise ratio. Moreover, field data applications show the effectiveness and potential of our method.
Czasopismo
Rocznik
Strony
643--658
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
autor
  • State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
autor
  • State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Bibliografia
  • 1. Afanasiev MV, Pratt RG, Kamei R, McDowell G (2016) Waveform-based simulated annealing of crosshole transmission data: a semi-global method for estimating seismic anisotropy. Geophys J Int 199(3):1586–1607
  • 2. Alford RM (1986) Shear data in the presence of azimuthal anisotropy: Dilley, Texas. In: SEG technical program expanded abstracts, pp 476–479
  • 3. Bale RA, Li JC, Mattocks B (2005) Robust estimation of fracture directions from 3-D converted-waves. In: SEG technical program expanded abstracts, pp 889–892
  • 4. Bale R, Gratacos B, Mattocks B, Roche S, Poplavskii K (2009) Shear wave splitting applications for fracture analysis and improved imaging: some onshore examples. First Break 27(9):73–83
  • 5. Benhama A, Cliet C, Dubesset M (1988) Study and applications of spatial directional filtering in three-component recordings. Geophys Prospect 36(6):591–613
  • 6. Boulfoul M, Watts DR (1994) Separation and enhancement of split S-waves on multicomponent shot records from the BIRPS WISPA experiment. Geophysics 59(1):131–139
  • 7. Červený V, Pšenčik I (2005) Polarization of plane waves in viscoelastic anisotropic media. In: 9th International Congress of the Brazilian Geophysical Society, pp 1831–1835
  • 8. Crampin S (1978) Seismic-wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic. Geophys J Int 53(3):467–496
  • 9. Crampin S (1983) Shear wave polarizations: a plea for three-component recording. In: SEG technical program expanded abstracts, pp 425–428
  • 10. Crampin S (1985) Evaluation of anisotropy by shear-wave splitting. Geophysics 50(1):142–152
  • 11. Dellinger JA, Nolte B, Etgen JT (2001) Alford rotation, ray theory, and crossed-dipole geometry. Geophysics 66(2):637–647
  • 12. Deng HC, Zhou W, Zhou QM, Chen WL, Zhang HT (2013) Quantification characterization of the valid natural fractures in the 2nd Xu member Xinchang gas field. Acta Petrol Sin 29(3):1087–1097
  • 13. Diallo MS, Kulesh M, Holschneider M, Scherbaum F, Adler F (2006) Characterization of polarization attributes of seismic waves using continuous wavelet transforms. Geophysics 71(3):V67–V77
  • 14. Gaiser JE (1999) Enhanced PS-wave images and attributes using prestack azimuth processing. In: SEG technical program expanded abstracts, pp 699–702
  • 15. Garotta R, Granger PY (1988) Acquisition and processing of 3C × 3-D data using converted waves. In: SEG technical program expanded abstracts, pp 995–997G
  • 16. Keith CM, Crampin S (1977) Seismic body waves in anisotropic media: reflection and refraction at a plane interface. Geophys J Int 49(1):181–208
  • 17. Li XY, MacBeth C (1997) Data-matrix asymmetry and polarization changes from multicomponent surface seismics. Geophysics 62(2):630–643
  • 18. Lu J, Wang Y, Yao C (2012) Separating P- and S-waves in an affine coordinate system. J Geophys Eng 9(1):12–18
  • 19. Lu J, Wang Y, Yang YY, Chen JY (2017) Pre-stack separation of PP and split PS waves in HTI media. Geophys J Int 210(1):510–524
  • 20. Martin MA, Davis TL (1987) Shear-wave birefringence: a new tool for evaluating fractured reservoirs. Lead Edge 6(10):22–28
  • 21. Savage MK (1999) Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting. Rev Geophys 37(1):69–106
  • 22. Shen HY, Li QC (2009) Seismic wave field separation and noise attenuation in linear domain via SVD. In: SEG technical program expanded abstracts, pp 3386–3389
  • 23. Slack RD, Ebrom DA, McDonald JA, Tatham RH (1993) Thin layers and shear-wave splitting. Geophysics 58(10):1468–1480
  • 24. Tang JM, Huang Y, Xu XR, Tinnin J, Hallin J (2009) Application of converted-wave 3D/3-C data for fracture detection in a deep tight-gas reservoir. Lead Edge 28(7):826–837
  • 25. Thomsen L (1988) Reflection seismology over azimuthally anisotropic media. Geophysics 53(3):304–313
  • 26. Thomsen L, Tsvankin I, Mueller MC (1999) Coarse-layer stripping of vertically variable azimuthal anisotropy from shear-wave data. Geophysics 64(4):1126–1138
  • 27. Vecsey L, Plomerová J, Babuška V (2008) Shear-wave splitting measurements—problems and solutions. Tectonophysics 462(1):178–196
  • 28. Winterstein DF, Meadows MA (1991) Shear-wave polarizations and subsurface stress directions at Lost Hills field. Geophysics 56(9):1331–1348
  • 29. Wuestefeld A, Bokelmann G (2007) Null detection in shear-wave splitting measurements. Bull Seismol Soc Am 97(4):1204–1211
  • 30. Zhang JL, Wang Y, Lu J (2013) A new algorithm for frequency-dependent shear-wave splitting parameters extraction. J Geophys Eng 10(5):55005–55011
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21206bf3-1308-4fed-a6f0-f91bfee37d29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.