PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Remarks on the sources of error in the modelling of lunar geotechnical structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Scale modelling should be a very useful strategy for the design of lunar structures. Preventing structural damages in the lunar environment is crucial and scale models are helpful to achieve this aim. The size of these models must be scaled to take into account the different gravitational levels. Since the lunar gravity acceleration is about one-sixth of the terrestrial one, it follows that the models on Earth will be very smaller than the prototype to be realized on the Moon. This strategy will represent an opportunity for engineers working on lunar structure design, provided that the errors, both computational and experimental, related to the change of scale are quantified, allowing reliable extension of the physical scale modeling results to the prototype. In this work, a three-dimensional finite element analysis of walls retaining lunar regolith backfill is described and discussed, in order to provide preliminary results, which can guide a future experimental investigation based on physical scale-modelling. In particular, computational errors related to the scale effects are assessed, with respect to a virtual prototype of the lunar geotechnical structure, and compared with errors from other sources of discrepancy, like the adopted constitutive model, the variability of the geotechnical parameters and the calculation section used in the 3D analysis. The results seem to suggest the soundness of this strategy of modelling and are likely to encourage new research, both numerical and experimental, supporting the structure serviceability assessment.
Wydawca
Rocznik
Strony
133--139
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
  • Politecnico di Bari, Department of Civil, Environmental, Land, Building Engineering and Chemistry, via Orabona 4, 70125 Bari, Italy
  • Politecnico di Bari, Department of Civil, Environmental, Land, Building Engineering and Chemistry, via Orabona 4, 70125 Bari, Italy
autor
  • Friedrich-Alexander Universität Erlangen-Nürnberg, Institute for Multiscale Simulation, Nägelsbachstrasse 49b, 91052 Erlangen, Germany
Bibliografia
  • [1] Bilotta E, Taylor N (2005) Modellazione geotecnica in centrifuga. Hevelius Edizioni, Benevento (Italy)
  • [2] Iai S, Tobita T, Nakahar T (2005) Generalised scaling relations for dynamic centrifuge tests. Géotechnique, 55(5), 355-362
  • [3] Schofield AN (1980) Cambridge Geotechnical Centrifuge Operations. Géotechnique, Volume 30 Issue 3, September 1980, pp. 227-268
  • [4] Ovesen N (1979) The scaling law relationships. Proc. 7th European conf. of soil mech. & foundation engnr., Brighton, 4: 319-323
  • [5] Ovesen NK (1985) The application of the theory of modeling to centrifuge studies. State of the Art Review on Geotechnical Centrifuge Modelling. Proc. 11th Int. Conf. on Soil Mech. And Found. Eng., San Francisco. Balkema, Rotterdam
  • [6] Wood DM (2004) Geotechnical modelling. Spon Press, London.
  • [7] Benaroya H (2002) An overview of lunar base structures: Past and future. AIAA Space Architecture Symposium, AIAA, Reston, Va., 1_12
  • [8] Jablonski AM, Ogden KA (2008) - Technical Requirements for Lunar Structures - Journal of Aerospace Engineering, ASCE, Vol.21, Issue 2
  • [9] Benaroya H, Bernold L, Chua KM (2002) Engineering, design, and construction of lunar bases. J. Aerosp. Eng., 15(2), 33-45
  • [10] Ruess F, Schaenzlin J, Benaroya H (2006). Structural Design of a Lunar Habitat. Journal of Aerospace Engineering, ASCE, Vol.19, N.3, 133-157.
  • [11] Cesaretti G, Dini E, De Kestelier X, Colla V, Pambaguian L (2014) Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica, 93, 430-450
  • [12] Brinkgreve RBJ, Engin E, Swolfs WM (2013). Plaxis 3D. Reference Manual
  • [13] Schanz T, Vermeer P, Bonier P (1999) The hardening soil model: Formulation and verification. Beyond 2000 in Computational Geotechnics - 10 Years of PLAXIS. Balkema, Rotterdam
  • [14] Arslan, H. (2007) “JSC-1a Geotechnical Properties Experiments”, Document No. 105525. Laboratory for Atmospheric and Space Physics, University of Colorado
  • [15] Mingjing J, Zhifu S, Utili S (2016) DEM modeling of cantilever retaining excavations. Engineering Computations, Vol. 33, Iss 2, pp. 366 - 394, 2016.7
  • [16] Bolton MD (1986). The strength and dilatancy of sands. Géotechnique 36, No .1, 65-78
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-211a6f1b-c63e-4c8e-aac0-9da69954a188
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.