PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficient and reliable prediction of dump slope stability in mines using machine learning: an in-depth feature importance analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study rigorously examines the pressing issue of dump slope stability in Indian opencast coal mines, a problem that has led to significant safety incidents and operational hindrances. Employing machine learning algorithms such as Random Forest (RF), k-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), and Gaussian Naive Bayes (GNB), the study aims to achieve a scientific goal of predictive accuracy for slope stability under various environmental and operational conditions. Promising accuracies were attained, notably with RF (0.98), SVM (0.98), and DT (0.97). To address the class imbalance issue, the Synthetic Minority Oversampling Technique (SMOTE) was implemented, resulting in improved model performance. Furthermore, this study introduced a novel feature importance technique to identify critical factors affecting dump slope stability, offering new insights into the mechanisms leading to slope failures. These findings have significant implications for enhancing safety measures and operational efficiency in opencast mines, not only in India but potentially globally.
Rocznik
Strony
685--706
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
  • Indian Institute of Technology, Department of Mining Engineering, Kharagpur, India
  • Indian Institute of Technology, Department of Mining Engineering, Kharagpur, India
Bibliografia
  • [1] Coal Ministry of India, Production of Raw Coal from Opencast and Underground Mines in Last Ten Years. https://Coal.Gov.in/Sites/Default/Files/2021-01/Production-Opencast-and-Under-Ground-Mines-Durin-Last-TenYears.Pdf. (2020).
  • [2] DGMS, Circular No. 2 Dhanbad, Dated 06.07.2010 Government of India, Ministry of Labor and Employment, Directorate General of Mines Safety. (2010).
  • [3] M. Cała, J. Flisiak, Slope stability analysis with numerical and limit equilibrium methods. Burczynski, Fedelinski & Majchrzak (Eds) Computer Methods in Mechanics, June 3-6 (2003).
  • [4] A. Pourkhosravani, B. Kalantari, A review of current methods for slope stability evaluation. Electronic Journal of Geotechnical Engineering 16 1245-1254 (2011).
  • [5] P.M.V. Nguyen, A. Wrana, S. Rajwa, Z. Różański, R. Frączek, Slope Stability Numerical Analysis and Landslide Prevention of Coal Mine Waste Dump under the Impact of Rainfall – A Case Study of Janina Mine, Poland. Energies (Basel). 15 (21), 8311 (2022). DOI: https://doi.org/10.3390/en15218311.
  • [6] J.H. Schmertmann, Estimating Slope Stability Reduction due to Rain Infiltration Mounding. Journal of Geotechnical and Geoenvironmental Engineering 132 (9), 1219-1228 (2006). DOI: https://doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1219).
  • [7] M. Yellishetty, W.J. Darlington, Effects of monsoonal rainfall on waste dump stability and respective geo-environmental issues: a case study. Environ. Earth Sci. 63 (6), 1169-1177 (2011). DOI: https://doi.org/10.1007/s12665-010-0791-0.
  • [8] X.T. Zhao, X.C. Gao, D.S. Li, The Stability Analysis of Nantong Coal Mine Waste Dump, Chongqing and Prevention Measures. Applied Mechanics and Materials 204-208, 3526-3531 (2012). DOI: https://doi.org/10.4028/www.scientific.net/AMM.204-208.3526.
  • [9] Y.-S. Song, Numerical Analysis of the Seepage from and Stability of a Mine Waste-dump Slope during Rainfall. The Journal of Engineering Geology 25 (1), 57-66 (2015). DOI: https://doi.org/10.9720/kseg.2015.1.57.
  • [10] R. Koner, D. Chakravarty, Numerical analysis of rainfall effects in external overburden dump. Int. J. Min. Sci. Technol. 26 (5), 825-831 (2016). DOI: https://doi.org/10.1016/j.ijmst.2016.05.048.
  • [11] J. Zhu, C. Chen, H. Zhao, An Approach to Assess the Stability of Unsaturated Multilayered Coastal-Embankment Slope during Rainfall Infiltration. J. Mar. Sci. Eng. 7 (6), 165 (2019). DOI: https://doi.org/10.3390/jmse7060165.
  • [12] O. Igwe, C. Chukwu, Slope stability analysis of mine waste dumps at a mine site in Southeastern Nigeria. Bulletin of Engineering Geology and the Environment 78 (4), 2503-2517 (2019). DOI: https://doi.org/10.1007/s10064-018-1304-8.
  • [13] W. Zhang, H. Li, Y. Li, H. Liu, Y. Chen, X. Ding, Application of deep learning algorithms in geotechnical engineering: a short critical review. Artif. Intell. Rev. 54 (8), 5633-5673 (2021). DOI: https://doi.org/10.1007/s10462-021-09967-1.
  • [14] W. Zhang, X. Gu, L. Tang, Y. Yin, D. Liu, Y. Zhang, Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge. Gondwana Research 109, 1-17 (2022). DOI: https://doi.org/10.1016/j.gr.2022.03.015.
  • [15] K.-K. Phoon, W. Zhang, Future of machine learning in geotechnics. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 17 (1), 7-22 (2023). DOI: https://doi.org/10.1080/17499518.2022.2087884.
  • [16] H. Adeli, Neural networks in civil engineering: 1989-2000. Comput.-Aided. Civi. Infrastruct. Eng. 16 (2), 126-142 (2001).
  • [17] I. Flood, N. Kartam, Neural Networks in Civil Engineering. II: Systems and Application. Journal of Computing in Civil Engineering 8 (2), 149-162 (1994). DOI: https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(149).
  • [18] I. Flood, N. Kartam, Neural Networks in Civil Engineering. I: Principles and Understanding. Journal of Computing in Civil Engineering 8 (2), 131-148 (1994). DOI: https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(131).
  • [19] M. Lazarevska, M, Knezevic, M, Cvetkovska, A. Trombeva-Gavriloska, Application of artificial neural networks in civil engineering. The. Vjesn. 21 (6), 1353-1359 (2014).
  • [20] J. Li, H. Hao, A review of recent research advances on structural health monitoring in Western Australia. Structural Monitoring and Maintenance 3 (1), 33-49 (2016). DOI: https://doi.org/10.12989/smm.2016.3.1.033.
  • [21] P.Z. Lu, S.Y. Chen, Y.J. Zheng, Artificial intelligence in civil engineering. Math. Probl. Eng. 1-22 (2012).
  • [22] G. Bolt, Fault models for artificial neural networks. IEEE, Piscataway. (1991).
  • [23] L. Wang, C. Wu, Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines. Bulletin of Engineering Geology and the Environment 79 (6), 2763-2775 (2020).
  • [24] Lin Wang, Chongzhi Wu, Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method. Acta Geotechnica 15 (11), 3135-3150 (2020).
  • [25] X. Gu, L. Wang, Q. Ou, W. Zhang, G.H. Sun, Reliability Assessment of Rainfall-Induced Slope Stability Using Chebyshev-Galerkin-KL Expansion and Bayesian Approach. Canadian Geotechnical Journal (2023). DOI: https://doi.org/10.1139/cgj-2022-0671.
  • [26] L. Chen, W. Zhang, X. Gao, L. Wang, Z. Li, T. Böhlke, U. Perego, Design charts for reliability assessment of rock bedding slopes stability against bi-planar sliding: SRLEM and BPNN approaches. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 16 (2), 360-375 (2022). DOI: https://doi.org/10.1080/17499518.2020.1815215.
  • [27] S.K. Singh, D. Chakravarty, Assessment of Slope Stability using Classification and Regression Algorithms Subjected to Internal and External Factors. Archives of Mining Sciences 68 (1), 87-102 (2023). DOI: https://doi.org/10.24425/ams.2023.144319.
  • [28] A.K. Bharati, A. Ray, M. Khandelwal, R. Rai, A. Jaiswal, Stability evaluation of dump slope using artificial neural network and multiple regression. Eng. Comput. 38, 1835-1843 (2022). DOI: https://doi.org/10.1007/s00366-021-01358-y.
  • [29] G. Gupta, S. Sharma, Dump Slope Stability Analysis Using Artificial Intelligence Experimental and Numerical Evaluation of Haul Road with different composite material in sub-base of surface coal mine View project Design of stable slope for highwall and dump structures View project, (2022). DOI: https://doi.org/10.18311/jmmf/2022/30445.
  • [30] B. Azmoon, A. Biniyaz, Z. Liu, Y. Sun, Image-Data-Driven Slope Stability Analysis for Preventing Landslides Using Deep Learning. IEEE Access. 9, 150623-150636 (2021). DOI: https://doi.org/10.1109/ACCESS.2021.3123501.
  • [31] D. Elmo, D. Stead, Disrupting rock engineering concepts: is there such a thing as a rock mass digital twin and are machines capable of learning rock mechanics?, in: Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics, Perth, pp. 565-576 (2020). DOI: https://doi.org/10.36487/ACG_repo/2025_34.
  • [32] J. Meng, H. Mattsson, J. Laue, Three-dimensional slope stability predictions using artificial neural networks. Int. J. Numer. Anal. Methods Geomech. 45 (13), 1988-2000 (2021). DOI: https://doi.org/10.1002/nag.3252.
  • [33] A. Chakraborty, D. Goswami, Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN). Arabian Journal of Geosciences 10 (17), (2017). DOI: https://doi.org/10.1007/s12517-017-3167-x.
  • [34] B. Gordan, D. Jahed Armaghani, M. Hajihassani, M. Monjezi, Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng. Comput. 32 (1), 85-97 (2016). DOI: https://doi.org/10.1007/s00366-015-0400-7.
  • [35] Z. Zhang, Z. Liu, L. Zheng, Y. Zhang, Development of an adaptive relevance vector machine approach for slope stability inference. Neural. Comput. Appl. 25 (7-8), 2025-2035 (2014). DOI: https://doi.org/10.1007/s00521-014-1690-1.
  • [36] L. Zhan, X. Guo, Q. Sun, Y. Chen, Z. Chen, The 2015 Shenzhen catastrophic landslide in a construction waste dump: analyses of undrained strength and slope stability. Acta Geotech. 16 (4), 1247-1263 (2021). DOI: https://doi.org/10.1007/s11440-020-01083-8.
  • [37] R.A. Shakesby, J.R. Whitlow, Failure of a mine waste dump in Zimbabwe: Causes and consequences. Environmental Geology and Water Sciences 18 (2), 143-153 (1991). DOI: https://doi.org/10.1007/BF01704668.
  • [38] T.N. Singh, M. Khandelwal, Slope stability: a major concern for coal exploitation. Gondwana Geol. Mag. 127-135 (2007).
  • [39] R.K. Singhal, T. Vladut, Design of solid waste dumps and waste disposal in Western Canadian surface mines, in: 9th Annual Symposium on Geotechnical and Geohydrological Aspects of Waste Management, pp. 123-133 (1989).
  • [40] R. Ulusay, M. Ekmekci, E. Tuncay, N. Hasancebi, Improvement of slope stability based on integrated geotechnical evaluations and hydrogeological conceptualisation at a lignite open pit. Eng. Geol. 181, 261-280 (2014). DOI: https://doi.org/10.1016/j.enggeo.2014.08.005.
  • [41] M.R. Saharan, D.M. Surana, S.K. Parihar, B.R. Bishnoiand, M. A. Saharan, Annual Technical Volume of Mining Engineering Division Board, Factor of Safety (FoS) based Slope Design Acceptance Criterion: A Case Study. 2(2020).
  • [42] B.M. Adams, Slope stability acceptance criteria for opencast mine design, 12th ANZ Conference on Geomechanics and Human Influence, Wellington, New Zealand, in: 2015.
  • [43] A.K. Agarwal, Annual Technical Volume of Mining Engineering Division Board. Fundamentals of Slope Stability 2 (2020).
  • [44] W. Fellenius, Calculation of stability of earth dam, in: In Transactions. 2nd Congress Large Dams, Washington, DC, pp. 445-462 (1936).
  • [45] A.W. Bishop, The use of the Slip Circle in the Stability Analysis of Slopes. Géotechnique 5 (1), 7-17 (1955). DOI: https://doi.org/10.1680/geot.1955.5.1.7.
  • [46] N. Janbu, Slope stability computations, Jon Wiley and Sons Inc, 1973.
  • [47] E. Spencer, A Method of analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces. Géotech nique 17 (1), 11-26 (1967). DOI: https://doi.org/10.1680/geot.1967.17.1.11.
  • [48] N.R. Morgenstern, V.E. Price, The Analysis of the Stability of General Slip Surfaces. Géotechnique. 15 (1), 79-93 (1965). DOI: https://doi.org/10.1680/geot.1965.15.1.79.
  • [49] S. Huang, M. Huang, Y. Lyu, An Improved KNN-Based Slope Stability Prediction Model. Advances in Civil Engineering 2020 1-16 (2020). DOI: https://doi.org/10.1155/2020/8894109.
  • [50] M. Liu, L. Wang, Z. Qin, J. Liu, J. Chen, X. Liu, Multi-scale feature extraction and recognition of slope damage in high fill channel based on Gabor-SVM method. Journal of Intelligent & Fuzzy Systems 38 (4), 4237-4246 (2020). DOI: https://doi.org/10.3233/JIFS-190767.
  • [51] D. Sun, H. Wen, Y. Zhang, M. Xue, An optimal sample selection-based logistic regression model of slope physical resistance against rainfall-induced landslide. Natural Hazards 105 (2), 1255-1279 (2021). DOI: https://doi.org/10.1007/s11069-020-04353-6.
  • [52] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research 16, 321-357 (2002). DOI: https://doi.org/10.1613/jair.953.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-211411b9-0bc8-44ec-9d97-d872ad548c39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.