PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic Analysis of the Graphite Flake Formation of Low Manganese and Sulfur Gray Cast Iron

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Low manganese and sulfur gray irons were produced by adding inoculant base Fe-Si with small amounts of Al and Ca in the ladle. The effect of the cast thickness, inoculant amount and shakeout time of the green sand molds were studied on the graphite flake formation by microscopically techniques. A thermodynamic analysis was carried out for the cast iron produced with the FactSage 7.2 software. Stability phase diagrams were obtained for both gray cast irons to different manganese (0.1 to 0.9 wt.%) and sulfur (0.01 to 0.12 wt.%) amounts to 1150°C. It was shown that lower amounts of manganese and sulfur allow forming the 3Al2O3·2SiO2, Al2O3, and ZrO2 solid compounds. The thermodynamic results match with those obtained by SEM-EDS. It is possible to form MnS particles in the liquid phase when the solubility product (%Mn) × (%S) equals 0.042 and 0.039 for heats A and B, respectively.
Słowa kluczowe
Twórcy
  • Departamento de Ingeniería en Metalurgia y Materiales. Instituto Politécnico Nacional - ESIQIE. Upalm. Ciudad de México. México
  • Departamento de Formación Básica Disciplinaria. Instituto Politécnico Nacional - UPIIH - ESIQIE. Pachuca, México
  • Departamento de Ingeniería en Metalurgia y Materiales. Instituto Politécnico Nacional - ESIQIE. Upalm. Ciudad de México. México
  • Departamento de Formación Específica. Instituto Politécnico Nacional - UPIIZ, Zacatecas, México
Bibliografia
  • [1] I. Riposan, M. Chisamera, S. Stan, ISIJ Int. 53, 10, 1683-1695 (2013), DOI: 10.2355/isijinternational.53.1683.
  • [2] H.M. Muhmond, H. Fredriksson, Metall. and Mater. Transactions B 44B, 283-298 (2013), DOI: 10.1007/s11663-012-9768-6.
  • [3] I. Minkoff. The Physical Metallurgy of Cast Iron. Norwich, England, John Wiley and Sons Ltd (1983).
  • [4] I. Riposan, M. Chisamera, S. Stan, J. of Therm. Analysis and Calorim. 132, 1017-1028 (2018), DOI: 10.1007/s10973-018-7023-3.
  • [5] I. Riposan, M. Chisamera, S. Stan, T. Skaland, M. Onsoien, Analyses of Possible Nucleation Sites in Ca/Sr Over-inoculated Gray Irons. AFS (2001).
  • [6] I. Riposan, M. Chisamera, S. Stan, T. Skaland, Int. J. Cast Met. Res. 16, 105-111 (2003), DOI: 10.1080/13640461.2003.11819567.
  • [7] I. Riposan, M. Chisamera, S. Stan, T. Skaland, A new Approach to Graphite Nucleation Mechanism in Gray Irons. Proc. AFS Cast Iron Inoculation Conference, Schaumburg, IL, AFS (2005).
  • [8] I. Riposan, S. Stan, V. Uta, I. Stefan, J. of Mater. Eng. and Perform. 26, 4217-4226 (2017), DOI: 10.1007/s11665-017-2869-2.
  • [9] J.R. Brown, Ferrous Foundryman’s Handbook. Woburn, MA, Foseco International Ltd (2000).
  • [10] C.V. White, Gray Iron. ASM Handbook. Volume 1. USA, ASM International (1993).
  • [11] J. Lacaze, M. Aberg, J. Sertucha, Review of microstructural features of chunky graphite in ductile cast irons. Keith Millis Symposium on Ductile Iron Nashville TN, AFS (2013).
  • [12] L.R. De, Y.J. Xiang, Heterogeneous nuclei in flake graphite. Trans. AFS (1991).
  • [13] A. Sommerfeld, B. Tonn, Int. J. of Metalcasting 3 (4), 39-47 (2009), DOI: 10.1007/BF03355457.
  • [14] I. Riposan, M. Chisamera, S. Stan, C. Hartung, D. White, Mater. Sci. and Technol. 26, 1439-1447 (2010), DOI: 10.1179/026708309X12495548508626.
  • [15] M. Chisamera, I. Riposan, S. Stan, D. White, G. Grasmo, Int. J. Cast Met. Res. 21, 1-4 (2008). DOI: 10.1179/136404608X361639.
  • [16] J.M. Radzikowska, Mater. Characterization 54, 287-304 (2005), DOI: 10.1016/j.matchar.2004.08.019.
  • [17] G.F. Vander Vort, Metallography Principles and Practice. 4th printing. Materials Park, OH, ASM International (2007).
  • [18] E. Fras, H. López, Int. J. of Metalcasting 4, 35-61 (2010), DOI: 10.1007/BF03355497.
  • [19] C.W. Bale, A.D. Pelton, W.T. Thompson, Facility for the Analysis of Chemical Thermodynamics (FactSage, v. 7.2), User’s Manual; 2018.
  • [20] I.C. Hughes, Trans. AFS 77, 121 (1969).
  • [21] A. Sommerfeld, B. Tonn, Int. J. of Cast Metals Res. 21, 23-6 (2008). DOI: 10.1179/136404608X361602.
  • [22] I. Zalakain, C. Berlanga, L. Alvarez, L. Asa, P. Labé, P. Rivero, J. Valencia, R. Rodríguez, J. Min. Metall. Sect. B-Metall. 54, 91-9 (2018). DOI: 10.2298/JMMB160718012Z
  • [23] J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin et al., Scanning Electron Microscopy and X-Ray Microanalysis. 3rd ed. New York, Springer Science+Business Media, LLC (2003).
  • [24] E. Piwowarsky, Hochwertiges Gusseisen. 2nd ed. New York, Springer-Verlag (1958).
  • [25] G. Alonso, D.M. Stefanescu, P. Larrañagara, E. de la Fuente, E. Aguado, R. Suárez, Int. J. of Cast Metals Res. 1-8 (2016), DOI: 10.1080/13640461.2016.1165459.
  • [26] M. Chisamera, S. Stan, I. Riposan, G. Grasmo, C. Hartung, Int. J. of Cast Metals Res. 24, 363-9 (2011), DOI: 10.1179/1743133611Y. 0000000011
Uwagi
1. The authors wish to thank the Institutions CONACyT, SNI and SIP-Instituto Politécnico Nacional for their permanent assistance to the Process Metallurgy Group at ESIQIE-Metallurgy and Materials Department.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-210c6f60-3c18-45a7-ad15-e2855b95d01e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.