PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influences of magnesium ions in water on gelatinization characteristics of starch and its flocculation behaviors on particles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is inevitable for the occurrence or built-ups of disturbing cations, especially Ca2+ or Mg2+ ions, in process water during the flotation of iron oxides by using starch as flocculants. In addition to alkali concentrations and temperature, water quality could have an essential role in changing the physicochemical properties of the starch solution and consequently disturbing its flocculation performance on particles. This study aims to identify the effects of magnesium ions on the gelatinization characteristics of starch and its flocculation properties on particles through a series of tests, such as flotation tests, settling tests, size analyses, zeta potentials, powder contact angle, Fourier Transform Infra-Red (FTIR) and X-ray Photoelectron Spectroscopy (XPS) measurement. All results show that magnesium ions at ≤ 4 mmol/L have a positive role due to enlarging the sizes of the particle flocs and accelerating their settling rates. The occurrence of Mg2+ ions at higher concentrations during starch gelatinization only obtains a starch sol-gel with entangled configurations and preoccupied active sites, resulting in the slower settling rate of the particle flocs and less hydrophilicity on mineral surfaces. It could be attributed to the cross-link interactions of magnesium-based precipitates with the acidic groups, especially carboxyl groups on the starch remnants. The suitable acid/base interactions between Mg(OH)2/MgCO3 compounds with these groups in the starch suspension could be beneficial for enhancing the flocculation of hematite as they could build bridges among the pieces and enlarge their sizes as a “load carrier” for aggregation with minerals. However, too much cross-linking could reentangle the remnants, block their adsorption sites on mineral surfaces, and eventually, weaken the flocculation capacity of starch.
Słowa kluczowe
Rocznik
Strony
art. no. 178149
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
autor
  • Department of Mineral Processing, Kunming University of Science and Technology, State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Yunnan, China, 650093
autor
  • Department of Mineral Processing, Kunming University of Science and Technology, State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Yunnan, China, 650093
autor
  • Department of Mineral Processing, Kunming University of Science and Technology, State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Yunnan, China, 650093
Bibliografia
  • BROWN, P.L., EKBEG, C., 2016. Alkaline Earth Metals, Hydrolysis of Metal Ions. Wiley- VCH Verlag GmbH & Co. KGaA. 155–224.
  • CHANDAR, P., SOMASUNDARAN, P., TURRO, N.J., WATERMAN, K.C., 1987. Excimer fluorescence determination of solid-liquid interfacial pyrene-labeled poly(acrylic acid) conformations. Langmuir. 3(2), 298-300.
  • FENG, Q., WEN, S., ZHAO, W., CHEN, H., 2018. Interaction mechanism of magnesium ions with cassiterite and quartz surfaces and its response to flotation separation. Sep. Purif. Technol. 206, 239-246.
  • FJTEMAEI, M, PLAKOWSKI, C., NGUYEN, A.V., 2016. The effect of calcium, magnesium, and sulphate ions on the surface properties of copper activated sphalerite. Miner. Eng. 89, 42-51.
  • FUERSTENAU, M.C., MARTIN, C.C., BHAPPU, R.B., 1963. The Role of Hydrolysis in Sulfonate Flotation of Quartz. Reprinted from Trans. 226, 449-454.
  • FU, J., ZHANG, Z., HAN, G., HAN, H., LIU, R., ZENG, L., KANG, J., YUE, T., 2023. Efficient treatment of starch wastewater through metallic-starch complexes and magnetic flocculation. Colloid. Surface A. 676, 132331, 1-10.
  • JEBBER, K.A., ZHANG, K., CASSADY, C.J., CHUNG-PHILIPS, A., 1996. An Initio and Experimental Studies on the Protonation of Glucose in the Gas Phase. J. Am. Chem. Soc. 118, 10515 - 10563.
  • KHRAISHEH, M., HOLLAND, C., CREAM, C., HARRIS, P., PAROLIS, L., 2005. Effect of molecular weight and concentration on the adsorption of CMC onto talc at different ionic strengths. Int. J. Miner. Process. 75, 197−206.
  • KNILL, C.J., KENNEDY, J.F., 2003. Degradation of cellulose under alkaline conditions. Carbohydr. Polym. 51, 281–300.
  • LEFEVRE, G., DUC, M., FEDOROFF, M., 2006. Chapter 2 - Accuracy in the determination of acid-base properties of metal oxides surfaces. Interf. Sci, Technol. 11, 35-66.
  • LI, K., ZHANG, H., PENG, T., LIU, C., YANG, S., 2022. Influences of starch depressant with the various molecular structure on the interactions between hematite particles and flotation bubbles. Colloids Surf. A: Physicochem. Eng. 652, 129814 1-7
  • LI, Q., ZHANG, L., YE, Y., GAO, Q., 2015. Effect of salts on the gelatinization process of Chinese yam (dioscorea opposita) starch with digital image analysis method. Food Hydrocolloid. 51, 468-475.
  • LIU, Q., LASKOWSKI, J.S., 1989. The Role of Metal Hydroxides at Mineral Surfaces in Dextrin Adsorption, II. Chalcopyrite-Galena Separations in the Presence of Dextrin. Int. J. Miner. Process. 27, 147-155.
  • LIU, W., MORAN, C.J., VINK. S. k, 2013. A review of the effect of water quality on flotation. Miner. Eng. 53, 91-100.
  • NIEMEÄ, K., 1990. Conversion of xylan, starch, and chitin into carboxylic acids by treatment with alkali. Carbohydr. Res. 204, 37-49.
  • OOSTEN, B.J., 1990. Interactions between starch and electrolytes. Starch/Stärke, 42, 327-330.
  • PAVLOVIC, S., BRANDAO, P.R.G., 2003. Adsorption of starch, amylose, amylopecitn and glucose monomer and their effect on the flotation of hematite and quartz. Miner. Eng. 16, 1117-1122.
  • PERES, A.E.C, CORREA, M.I., 1996. Depression of iron oxides with corn starch. Miner. Eng. 9, 1227-1234.
  • PINTO, C.L.L., DE ARAUJO, A.C., PERES, A.E.C., 1992. The effect of starch, amylose and amylopectin on the depression of oxidize- minerals. Miner. Eng. 5, 467-478.
  • PEÇANHA, E.R., ALBUQUEERQUE, M.D., SIMÃO, R.A., 2019. Interaction forces between colloidal starch and quartz and hematite particles in mineral flotation. Colloids Surfaces A. 562, 79-85.
  • RAO, K.H., NARASIMHAN, K.S., 1985. Selective flocculation applied to Barsuaniron Iron Ore Tailings. Int. J. Miner. Process. 14, 67-75.
  • REN, L., QIU, H., ZHANG, Y., NGUYEN, A., ZHANG, M., WEI, P., LONG, Q., 2018. Effects of alkyl ether amine and calcium ions on fine quartz flotation and its guidance for upgrading vanadium from stone coal. Powder Technol. 338, 180-189.
  • ROBERTS, S.A., CAMERON, R.E., 2002. The effects of concentration and sodium hydroxide on the rheological properties of potato starch gelatinization. Carbohydr. Polym. 50, 133-143.
  • ROCHA, G. M., DE SOUZA MACHADO, N. R., PEREIRA, C.A., 2019. Effect of ground corn and cassava flour on the flotation of iron ore tailings. J. Mater. Res. Technol. 8, 1510–1514.
  • RUAN, Y., ZHANG, Z., LUO, H., XIAO, C., ZHOU, F., CHI, R., 2018. Effects of metal ions on the flotation of apatite, dolomite and quartz. Miner. 8, 1-12.
  • SUBRAMANIAN, S., NATARAJAN, K.A., 1988. Some studies on the adsorption behavior of an oxidized starch on hematite. Miner. Eng. 1, 241-254.
  • TANG, M., LIU, Q., 2012. The acidity of caustic digested starch and tis role in starch adsorption on mineral surfaces. Int. J. Miner. Process. 112-113, 94-100.
  • TOHRY, A., DEHGHAN, R., OLIVEIRA, A.V., CHELGANI, S.C., 2005. Enhanced washburn method (EWM): A comparative study for the contact angle measurement of powders. Adv. Powder Technol. 31, 4665-4671.
  • TRAHAR, G.D., SENIOR, W.J., 1991. The influence of metal hydroxides and collector on the flotation of chalcopyrite. Int J Miner. Process. 33, 321-341.
  • TURRER, H.D.G., PERES, A.E.C., 2010. Investigation on alternative depressants for iron ore flotation. Miner. Eng. 23, 1066-1069.
  • WANG, D., LIU, Q., 2021. Influence of aggregation/dispersion state of hydrophilic particles on their entrainment in fine mineral particle flotation. Miner. Eng. 166, 106835 1-14.
  • WANG, R., SUN, W., HAN, H., SUN, W., LIU, R., 2022. A novel fine gangue depressant: Metal ions-starch colloidal depressant and its effect on ultrafine chlorite. Colloid. Surface A. 655(130326), 1-10.
  • WEISSENBORN, P.K., WARREN, L.J., DUNN, J.G., 1995. Selective flocculation of ultrafine iron ore. 1. Mechanism of adsorption of starch onto hematite. Colloids Surf. A: Physicochem. Eng. 99, 11-27.
  • YANG, S., WANG, L., 2018. Structural and functional insights into starches as depressant for hematite flotation. Miner. Eng. 124, 149-157.
  • YANG, S., XU, H., KANG, H., LI, K., LI, C., 2023. Investigation into starch adsorption on hematite and quartz in flotation: role of starch molecular structure. Appl. Surf. Sci. 623, 1-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2106f433-e475-4681-9a3b-88943335b730
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.