PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formation of silicon oxide nanowires in nanomaterial synthesis experiments based on the usage of tube furnace

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In an effort to synthesize doped ZnO nanowires, SiOx nanowires were obtained accidently. In the experiment, mixed powders containing chemicals such as ZnO, graphite, Ga2O3, and In2O3 were placed in the center of a tube furnace, where the temperature was set to 1200 °C and the vacuum was approximately 27 Pa. Silicon wafers were placed around the vicinity of the furnace exit to collect the expected nanomaterials. After prolonged heating, grey layers were found on top of one wafer located inside the furnace. The layer showed no adhesion to the substrate. Characterization by using Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and Energy Dispersive X-ray Spectroscopy (EDS) revealed that this layer consisted of SiOx nanowires. Formation of Si-containing liquid drop and the subsequent growth of SiOx nanowires out of it are suggested as the growth mechanism.
Słowa kluczowe
EN
Wydawca
Rocznik
Strony
350--356
Opis fizyczny
Bibliogr. 19 poz., rys., wykr.
Twórcy
autor
  • Department of Physics, Clarion University, Clarion, PA 16214, USA
autor
  • Engineering Department, Youngstown State University, Youngstown, OH 44555, USA
autor
  • Engineering Department, Youngstown State University, Youngstown, OH 44555, USA
autor
  • Department of Physics, Clarion University, Clarion, PA 16214, USA
autor
  • Department of Physics, Clarion University, Clarion, PA 16214, USA
autor
  • Department of Physics, Clarion University, Clarion, PA 16214, USA
autor
  • Department of Physics, Clarion University, Clarion, PA 16214, USA
Bibliografia
  • [1] HORNVAK G., JOYDUTTA D., TIBBALS D.F., RAO A., Introduction to Nanoscience, CRC Press, 2008.
  • [2] MANASREH O., Introduction to Nanomaterials and Devices, John Wiley, New Jersey, 2012.
  • [3] DEYU L., WU Y., KIM P., SHI L., YANG P., MAJUMDAR A., Appl. Phys. Lett., 83 (2003), 2934.
  • [4] DECKER C.A., SOLANKI R., FREEOUF J.L., CARRUTHERS J.R., EVANS D.R., Appl. Phys. Lett., 84 (2004), 1389.
  • [5] WU X.C., SONG W.H., WANG K.Y., HU T., ZHAO B., SUN Y.P., DU J.J., Chem. Phys. Lett., 336 (2001), 53.
  • [6] CHEONG K., YI C., Nanowires Science and Technology, (2010), Web.
  • [7] YU D.P., LEE C.S., Solid State Comm., 105 (1998), 403.
  • [8] AHARONOVICH I., Nanotechnology, 90 (2007), 263109.
  • [9] LAI Y.S., WANG J.L., LIOU S.C., TU C.H., Chem. Phys. Lett., 453 (2008), 97.
  • [10] SOOD D., SEKHAR P., BHANSALI S., Appl. Phys. Lett., 88 (2006), 143110.
  • [11] LIANG C.H., ZHANG L.D., MENG G.W., WANG Y.W., CHU Z.Q., J. Non-Cryst. Solids 277 (2000), 63.
  • [12] JIANG Z. et al., Applied Physics A: Materials Science and Processing, 81 (2005), 477.
  • [13] YANG Y., WU S., CHIU H., LIN P., CHEN Y., J. of Phys. Chem. B, 108 (2004), 846.
  • [14] SAULIG-WENGER K., CORNU D., CHASSAGNEUX F., EPICIER T., MIELE P., Journal of Materials Chemistry, 13 (2003), 3058.
  • [15] LI S.H., ZHU X.F., ZHAO Y.P., J. Phys. Chem. B, 108 (2004), 17032.
  • [16] PUKIRD S., TIPPARACH U., KASIAN P., LIMSUWAN P., Solar Energy, 647 (2009), 16.
  • [17] LI C., SOLOMON V.C., DURIS P.D., WANG L., WANG L., Materials Lett., 65 (2011), 113.
  • [18] CARTER P., GLEESON B., YOUNG D.J., Oxid. MET., 56 (2001), 375.
  • [19] ZHU Y.Q. et al., Journal of Materials Chemistry, 8 (1998), 1859.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2104c51d-8d14-45e1-b6ba-446fa672867e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.