PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of leaf moisture of chinese mustard green and water spinach using single-port circular SRR microwave sensor for post-harvest in the agriculture industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza wilgotności liści gorczycy chińskiej i szpinaku wodnego przy użyciu jednoportowego okrągłego czujnika mikrofalowego SRR do stosowania po zbiorach w przemyśle rolniczym
Języki publikacji
EN
Abstrakty
EN
An analysis of leaf moisture for chinese mustard green and water spinach using a microwave sensor is presented in this paper. The microwave sensor is based on a Circular Split Ring Resonator (SRR) with a single-port of the input feeder. The sensor operates at resonant frequencies in the range of 3 GHz to detect different levels of moisture content of the leaves. The Circular SRR was designed in a commercialized EM simulator and fabricated using Rogers RO4350B. The permittivity of the leaf was simulated to analyze the response of resonant frequency of the Circular SRR. Then the fabricated Circular SRR was used to measure the leaf moisture of these two vegetables based on the different resonant frequencies. Results showed that frequency changes were detected for both types of vegetable leaves when the leaf's moisture decreased gradually. With this analysis, this microwave sensor can be used for post-harvest quality control in the agriculture industry.
PL
W artykule przedstawiono analizę wilgotności liści gorczycy chińskiej i szpinaku wodnego za pomocą czujnika mikrofalowego. Czujnik mikrofalowy oparty jest na okrągłym rezonatorze z dzielonym pierścieniem (SRR) z pojedynczym portem zasilacza wejściowego. Czujnik działa na częstotliwościach rezonansowych w zakresie 3 GHz, wykrywając różne poziomy wilgotności liści. Circular SRR został zaprojektowany w skomercjalizowanym symulatorze EM i wyprodukowany przy użyciu RO4350B Rogers. Symulowano przenikalność elektryczną skrzydła w celu analizy odpowiedzi częstotliwości rezonansowej Circular SRR. Następnie wyprodukowano Circular SRR do pomiaru wilgotności liści tych dwóch warzyw w oparciu o różne częstotliwości rezonansowe. Wyniki pokazały, że zmiany częstotliwości zostały wykryte dla obu rodzajów liści warzyw, gdy wilgotność liścia stopniowo spadała. Dzięki tej analizie ten czujnik mikrofalowy może być używany do kontroli jakości po zbiorach w przemyśle rolniczym.
Rocznik
Strony
251--254
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Microwave Research Group, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia
  • Microwave Research Group, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia
  • Microwave Research Group, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia
  • Microwave Research Group, Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia
  • Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Cawangan Melaka, Kampus Jasin, Melaka, Malaysia
autor
  • Department of Electrical Engineering, Universitas Trisakti, DKI Jakarta, 11440, Indonesia
Bibliografia
  • [1] Rajapaksha, L., D. M. C. C. Gunathilake, S. M. Pathirana, and T. Fernando. "Reducing post-harvest losses in fruits and vegetables for ensuring food security—Case of Sri Lanka." MOJ Food Process Technols 9, no. 1 (2021): 7-16.
  • [2] El-Ramady, Hassan R., Éva Domokos-Szabolcsy, Neama A. Abdalla, Hussein S. Taha, and Miklós Fári. "Postharvest management of fruits and vegetables storage." Sustainable Agriculture Reviews: Volume 15 (2015): 65-152.
  • [3] Workineh, Melkamu, and Hewan Lemma. "Post Harvest Loss Management and Quality Control of Fruits and Vegetables in Ethiopia for Securing Food and nutrition—A review." Food Sci. Qual. Manag 100 (2020): 21-28.
  • [4] Florkowski, Wojciech J., Nigel H. Banks, Robert L. Shewfelt, and Stanley E. Prussia, eds. Postharvest handling: a systems approach. Academic press, 2021.
  • [5] Aggarwal, Deepak, Robert L. Shewfelt, and Stanley E. Prussia. "Systems approaches for postharvest handling of fresh produce." In Postharvest Handling, pp. 17-49. Academic Press, 2022.
  • [6] Sugri, Issah, Mutari Abubakari, Robert Kwasi Owusu, and John Kamburi Bidzakin. "Postharvest losses and mitigating technologies: evidence from Upper East Region of Ghana." Sustainable Futures 3 (2021): 100048.
  • [7] Zainalabidin, Fazly Ann, Mozhiarhasi Sandra Sagrin, Wan Nabilah Wan Azmi, and Ainun Sabihah Ghazali. "Optimum postharvest handling-effect of temperature on quality and shelf life of tropical fruits and vegetables." Journal of Tropical Resources and Sustainable Science (JTRSS) 7, no. 1 (2019): 23-30.
  • [8] Lufu, Robert, Alemayehu Ambaw, and Umezuruike Linus Opara. "Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors." Scientia Horticulturae 272 (2020): 109519.
  • [9] Bandal, Amol, and Mythili Thirugnanam. "Quality measurements of fruits and vegetables using sensor network." In Proceedings of the 3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC–16’), pp. 121-130. Springer International Publishing, 2016.
  • [10] Rosaline, S. Imaculate, and S. Raghavan. "Exploring split ring resonators for GHz applications." In 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 559-562. IEEE, 2016.
  • [11] M. Aldrigo et al., "Fast Method for the Assessment of SRR or ELC-Based Planar Filters: Numerical Analysis and Experiments," in IEEE Access, vol. 11, pp. 77307-77323, 2023.
  • [12] Qiao, Zhijun, Xuchao Pan, Fan Zhang, and Jianchun Xu. "A tunable dual-band metamaterial filter based on the coupling between two crossed SRRs." IEEE Photonics Journal 13, no. 3 (2021): 1-7.
  • [13] Keriee, Hussam et al., "Wideband Planar Microstrip Antenna Based on Split Ring Resonator For 5G Mobile Applications." Przeglad Elektrotechniczny 97, no. 11 (2021).
  • [14] Sehgal, Puneet, and Kamlesh Patel. "Dual-Band Hexagonal SRR Antennas and Their Applications in SIMO and MISOBased WLAN/WiMAX Systems." Progress In Electromagnetics Research B 99, no. 2 (2023).
  • [15] Budnarowska, Magdalena, and Jerzy Mizeraczyk. "Oddziaływanie płaskiej fali elektromagnetycznej z metapowierzchnią złożoną z rezonatorów SRR 2.5 GHz." Przegląd Elektrotechniczny 97, no. 2 (2021): 39-42.
  • [16] M. A. U. Haq, A. Armghan, K. Aliqab and M. Alsharari, "A Review of Contemporary Microwave Antenna Sensors: Designs, Fabrication Techniques, and Potential Application," in IEEE Access, vol. 11, pp. 40064-40074, 2023.
  • [17] A. Shah, O. Niksan, M. C. Jain, K. Colegrave, M. Wagih and M. H. Zarifi, "Microwaves See Thin Ice: A Review of Ice and Snow Sensing Using Microwave Techniques," in IEEE Microwave Magazine, vol. 24, no. 10, pp. 24-39, Oct. 2023.
  • [18] Ho, Yun-Rei, and Chin-Lung Yang. "A wearable throat vibration microwave sensor based on split-ring resonator for harmonics detection." In 2020 IEEE/MTT-S International Microwave Symposium (IMS), pp. 504-507. IEEE, 2020.
  • [19] Redzwan, Syaiful et al., "Frequency domain analysis of hip fracture using microwave Split Ring Resonator sensor on phantom model." In 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), pp. 244-247. IEEE, 2016.
  • [20] Velez, Paris et al., "Split ring resonator-based microwave fluidic sensors for electrolyte concentration measurements." IEEE Sensors Journal 19, no. 7 (2018): 2562-2569.
  • [21] Vélez, Paris, Jonathan Muñoz-Enano, and Ferran Martín. "Electrolyte concentration measurements in DI water with 0.125 g/L resolution by means of CSRR-based structures." In 2019 49th European Microwave Conference (EuMC), pp. 340-343. IEEE, 2019.
  • [22] Mukherjee, Saptarshi, Xiaodong Shi, Lalita Udpa, Satish Udpa, Yiming Deng, and Premjeet Chahal. "Design of a split-ring resonator sensor for near-field microwave imaging." IEEE Sensors Journal 18, no. 17 (2018): 7066-7076.
  • [23] Chauhan, Harish Kumar, Nilesh Kumar Tiwari, and Surya Prakash Singh. "Improved complementary split-ring resonator for nondestructive testing of materials." In 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), pp. 370-375. IEEE, 2017.
  • [24] Keshavarz, Rasool, Justin Lipman, Dominique MM-P. Schreurs, and Negin Shariati. "Highly sensitive differential microwave sensor for soil moisture measurement." IEEE Sensors Journal 21, no. 24 (2021): 27458-27464.
  • [25] Silva, Lincoln Alexandre Paz, Francisco de Assis Brito-Filho, and Humberto Dionísio de Andrade. "Analysis of metamaterial-inspired soil moisture microwave sensor." Microwave and Optical Technology Letters 64, no. 3 (2022): 422-427.
  • [26] Li, Chenxiao, Xiaoting Yu, Zezhao Chen, Qian Song, and Yanlei Xu. "Free space traveling–standing wave attenuation method for microwave sensing of grain moisture content." Measurement and Control 54, no. 3-4 (2021): 336-345.
  • [27] Yan, YuHeng, XianQi Lin, Zhe Chen, Yang Cai, and Zhi Chen. "A Microwave Sensor for Leaf Moisture Detection Based on Split-Ring Resonator." In 2020 IEEE Asia-Pacific Microwave Conference (APMC), pp. 427-429. IEEE, 2020.
  • [28] Pievanelli, Elisa, Riccardo Stefanelli, and Daniele Trinchero. "Microwave-based leaf wetness detection in agricultural wireless sensor networks." In 2016 IEEE Sensors Applications Symposium (SAS), pp. 1-4. IEEE, 2016.
  • [29] Ling, J. A., Y. L. Then, K. Y. You, J. Ahmed, and D. N. A. Zaidel. "Tea leaves moisture prediction using one-port monopole sensor." In 2017 IEEE Asia Pacific Microwave Conference (APMC), pp. 654-657. IEEE, 2017.
  • [30] Sinha, Kushagra, Olutosin C. Fawole, and Massood Tabib- Azar. "Non-invasive monitoring of electrical parameters of Schefflera arboricola leaf." In 2015 IEEE Sensors, pp. 1-4. IEEE, 2015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2103752f-829c-4a92-8ca5-9fd53b6dc6e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.