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ABSTRACT
For urban electric buses, it is important to develop a schedule for fast charging of batteries as a function of existing 
operating conditions. The paper presents a model for the optimization of charging process of electric bus batteries 
in the electric vehicle charging station system on their routes, with a determined structure. The place and time of 
battery charging are selected as a function of the existing bus operating conditions, assessment of the battery charge 
level and location in the transport urban infrastructure, using the Monte Carlo simulation approach. The aim of the 
article is to optimize the speed of electric buses with the use of cloud computing aimed at the collision-free use of a 
limited number of charging stations for electric vehicles on their routes and minimizing the total energy demand.
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1. Nomenclature

1.1 Index

i – Index for stops.
t – Index for time.
k, n, m – Sub-indices to denote variation.

1.2 Parameters

di – Distance between stop i and i-1 in the bus route.
μas – Bus average speed on the route.
σas – Bus average speed standard deviation on the route.
μst – Average bus duration time at one stop.
σst – Standard deviation of the average bus duration time at a stop.
vi – Speed between stop i and i-1 on the bus route.
tdi – Duration time at bus stop i.

wp – Net weight of a passenger.
λup – Average number of passengers boarding the bus.
λdown – Average number of passengers leaving the bus.

iup
Np  – Number of passengers boarding at bus stop i.

idownNp  – Number of passengers leaving at bus stop i.
wb0 – Empty bus net weight.
tsi – Time on the street between stop i and i-1 on the bus route.
tri – Time between stop i and i-1 including the duration time 

at bus stop i.
P0 – Bus power consumption.
P1 – Load power infrastructure.
N – Route duration time.

1.3 Variables

t
iwb  – i i t
t
iPb  – i i

t
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2. Introduction

Global warming, decarbonization of the transport sector and 
energy effi  ciency policies to increase the use of public transport are 
objectives set by the EU [1]. Although these strategies are globalized 
and adopted by many countries, for example, China [2]. For these 
reasons, the number of publications about electric buses and their 
application in public transport has increased exponentially in recent 
years.

Th e massive introduction of electric bus fl eets has barriers, but 
there are viable solutions associated with the two main problems 
of this type of technology, batteries types [1] and charging 
technologies [3].

In the paper [4], the authors propose to introduce electric buses 
to reduce levels of CO2 concentration in cities and the problems 
associated with this type of technology. Th e paper ends proposing a 
decision-making model associated with a specifi c type of technology 
[5] that seeks to replace the conception of current electric buses 
and provide a real and viable solution. In addition, they express 
that the new technology [5] could replace the current electric trams 
because this new technology eliminates overhead lines, reducing 
considerably the maintenance costs.

In this paper we continue the work [4] and we explore other 
problems related with this type of system and its operation. We 
propose an objective function with two targets, and we consider 
the interactions between the routes. In addition, we focused the 
discussion of the paper on analyzing the problem associated with 
bus agglomeration at stops, proposing a possible solution for this 
problem (see Fig. 1).

Fig. 1. Conceptual framework [own study]

To solve the bus agglomeration at stops problem, we propose to 
use a bus fl eet speed control based on the cloud, taking as a reference 
the eff ectiveness of this type of control [6]. Th e solution is viable 
because the proposed model allows controlling the speed of buses. 
Th e results of the investigation show that when we control the speed 
of the buses, the charging moments of the electric buses change, 
evidencing the applicability of the model and its compatibility with 
this the conceptual framework.

3. Materials and methods

Th e optimization model objective (1) is to determine an 
infrastructure of charging stations that guarantee to minimize the 
energy t t

iE x  needed by the bus for the passengers transportation, 
as well as to minimize the chargers stations number EN t

ii
x  on the 

route. Th e input is described by a set of charging events t
ix , which 

have a possible starting time its  and a duration itd . Th e charger 
optimization assigns charging events to chargers and matches the 
bus stops. Th e rescheduling of the charging events to minimize 
the energy and the charger’s number is a complex scheduling 
problem. Penalties for shift ing when the bus is not able to reach its 
destination are included.

t
iF x

ENt t t t
i i ii

F x E x x

Th e variables and parameters of public buses operation are 
known for the transportation companies experience operating 
these systems. However, they depend on the route characteristics. 
For this reason, this paper assumes probability distribution laws 
to simulate the variables and parameters of the proposed model, 
knowing that in a real study case, all the variables and parameters 
stated would be known, allowing to obtain the problem solution 
according to the route studied. Th e optimization model objectives 
are described below from the variables and parameters necessary 
for the process simulation.

Th e modeling begins with the initial conditions:
• Stops number in the route and the distance between each stop di.
• Average speed μas of the bus on the route.
• Standard deviation σas of the average bus speed on the route.
• Average duration μst of the bus at stop i.
• Standard deviation σst of the average bus duration at stop i.

Th e parameters above allow us to estimate the bus speed and 
the stop bus duration with probability distribution laws in each 
route section, assuming that they follow a Normal probability 
distribution, which we denote as i as asv N  and 

i st sttd N  respectively.
On the other hand, it is necessary to know:
• Th e net weight wp of the passengers.
• Th e average number of passengers λup that board the bus at stop i.
• Th e average number of passengers λdown leaving the bus at stop i.

Th e parameters above allow us to simulate the weight that the 
bus t

iwb  has at stop i at the instant of time t. Assuming that the 
number passengers boarding and leaving the bus at stop i follows 
a Poisson probability distribution, which we denote 

iup upNp P
and 

idown downNp P  respectively. Knowing these parameters 
can be estimated with the equation (2) the bus weight in each 
route section.

i i

t t t
i up downwb wb wp Np wp Np
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The time it takes to travel the bus tsi between the i and i-1 
in the bus route is determined by the section distance di and the 
simulated speed vi. Therefore, the equation (3) defines the travel 
time in the street. When the street time and the stop time is added, 
we obtain the time of each route section, as shown in equation (4).

i
i

i

d
ts

v

i i itr ts td

The bus weight during each route section i does not change. 
The weight for each section remains constant in time. Therefore, 
the variable t = [tsi-1, tsi] varies in each route section.

If we are in the presence of an electric bus, and that we know 
the weight in each route section, it is possible to estimate the bus 
energy consumption for each condition, because they are directly 
proportional. Equation (5) shows the power consumed by the bus 
in each route section.

t
t t i
i i

wb
Pb Pb P t

wb

Where P0 is the bus power consumption and Δt = t - (t - 1).
The power consumption value is constant but depends on 

weather conditions (consumption of air conditioning, consumption 
of lights, auxiliary devices, among others). This electricity 
consumption is during the route from stop i to stop i+1. Therefore, 
the variable t = [tsi-1, tsi] varies in each route section.

The problem to solve in this investigation is to determine which 
is the best distribution of charging stations at intermediate points 
along the route. The charging points matches with bus stops i and 
the time required for charging is determined by the duration time 
tdi of the bus at the stop to pick up passengers. The investigation 
uses a binary variable x, defined in equation (6) to vary the points 
where the bus receives load.

i it
i

i i

i ts td
x

i ts td

To introduce this condition, the equation (7) is formulated.
t t
i it

i t t
i i

Pb P t x
Pb

Pb x

Where P1 is the load power infrastructure and t
iPb  is power 

consumed by the bus between stop i and i-1 at time instant t.
In this case, the variable t in equation (7) is determined by 

the interval [tsi, tdi]. Therefore, to determine the bus consumption 
along the entire route, equation (8), is proposed, as shown below.

t
t i
i i i

t t t
i i i i i

t t
i i i i

wb
Pb P t ts ts

wb
Pb Pb P t x ts td

Pb x ts td

From the equation (8) it is possible to determine the energy 
consumed by the bus in the whole route by means of equation (9). 
The power is determined by the intermediate load points in the route, 
therefore, an optimization model is proposed that minimizes the 
energy consumed by the bus in the whole route. The optimization 
model varies the variable t

ix  looking for the best combination of 
charging stations on the route.

Ntst t t
i its

E x Pb dt

Nt t t t t t
i n n i i n i i nn

E x t t x Pb t x Pb t

Where N is the time duration of the route and [tn+1, tn] is the 
sampling time.

On the other hand, the number of charging stations on the route is 
proportional to the investment cost. For this reason, it is defined as the 
second objective, minimize the number of charging stations, defined 
in the equation (10). The second objective inclusion establishes the 
compromise between minimizing the number of charging stations 
against minimizing the energy used by the bus through a Pareto 
frontier:

EN
t
i

i
x

Where NE is the number of charging stations on the route, because 
the binary variable t

ix  = 1 when a charging station is required at stop i.
Once the two objectives have been defined, it is described how 

to determine the number of charging stations and their distribution 
in the route based on the proposed model results. The existence 
of random variables induces the need to use the Monte Carlo 
simulation method to estimate the number of charging stations 
expected on the route t

iE x . Table 1 shows the results structure.
A model with probabilistic variables introduces fluctuations in 

the simulation results, but according to the large numbers theory if we 
repeat the process k times the result tends to the simulation process 
average behavior. Table 1 is the main result of this investigation, 
which shows the charging stations distribution necessary for the bus 
to reach the route destination. If the number of ones in each row 
(simulation) of Table 1 are added, the number of charging stations in 
each simulation is obtained, the column resulting average value shows 
us the number of charging stations t

iE x  that the route needs for the 
bus to reach the final destination. The frequency distribution 
for each simulation, showing the stops where the charging stations 
should be located. This result is obtained by adding the number of 
ones in each column of Table 1.

Table 1. Distribution of charging stations [own study]

Number of simulations
Terminal stops

1 2 3 m

1 x11 x12 x13 x1m

2 x21 x22 x23 x2m

3 x31 x32 x33 x3m

k xk1 xk2 xk3 xkm
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In this work, to estimate t
iE x  the Monte Carlo simulation 

method is used. Th e convergence process is fl uctuating in this 
method. However, the error level decreases when the number of 
samples increases, according to the law of large numbers. In this 
method it is not practical to run a simulation with many samples, 
because more calculation time is required. Th erefore, it is necessary 
to balance, the required precision and the calculation time. In this 
work, a stop criterion is used. Th is criterion guarantees that the 
simulation continues, until the t

iE x  has the precision specifi ed 
for the simulation. Th e parameter used as stopping criterion in the 
method is the coeffi  cient of variation.

If t
iE x  is the number of charging stations estimated on the 

route, in the Monte Carlo simulation, the expected value and the 
variance of t

ix  are (11) and (12) respectively.
N

t t
i i k

k
E x x

N

N
t t t
i i k i

k
V x x E x

N

Where t
i kx  is the observed value of t

ix  in the simulation k, and 
N is the total number of simulations.

It is important to note that (11) only estimates the expected 
value of t

ix . However, the uncertainty around t
iE x  is measured 

by the variance (13) and standard deviation (14) of the expected 
value.

t
it

i

V x
V E x

N

t
it t

i i

V x
E x V E x

N

Th e level of simulation precision is expressed by the coeffi  cient 
of variation β defi ned in (15). Th is coeffi  cient is rewritten 
conveniently in (16), where t t

i ix V x .
Th e simulation is controlled with the coeffi  cient of variation 

β, selecting the error tolerance ε in the simulation (17). Th e error 
tolerance ε is the estimate maximum error. In the estimates it is 
typical to use 5% or 0,05.

t
i

t
i

E x

E x

t t
i i

t t
i i

V x x
NE x E x N

t
i

t
i

x

E x N

Th e value of β decreases when the number of simulations N
increases, as shown in (16). Th erefore, the simulation process is 
stopped when β is less than ε.

Th e precision level of the Monte Carlo simulation method 
is related to the number of samples in the simulation and is 
independent of the system dimension. Th is condition is appropriate 
for handling systems with complex functions and large dimensions.

4. Results and discussions

Th e paper proposes several scenarios to verify the model 
applicability. Th e routes used have 22 stops and are shown in 
Fig. 2, one of urban environment with 11 km and one of regional 
environment with 23 km. Scenario 1 shows the proposed model 
solution with the 11 km route for various percentages of bus 
battery capacity, Scenario 2 shows the solution for the 23 km route 
with 100% battery capacity and, the Scenario 3 shows the model 
solution when there is interaction between the routes, and for the 
same scenario and operating conditions, we show how the results 
change when we control the speed of the buses.

Fig. 2. Transport route distribution [own study]

4.1 Scenario 1

Th e research uses data from previous paper [7] and [8]. Fig. 
2 shows the distance by stops in meters of a route with 22 stops 
and 11 km (urban environment) of distance. Th e bus average 
speed on the route is μas = 4,5 m/s and a standard deviation of 
σas = 0,05μas is assumed. Th e bus duration time at the stops is μst
= 20 seconds and a standard deviation of σst = 0,05μst is assumed. 
Th e passengers net weight is wp = 75kg, the average number of 
passengers going up and down on the bus at each stop i is λup = 9 
and λdown = 10 respectively. It is assumed as an initial condition that 
10 passengers ride the bus at the fi rst stop. Th e empty bus weight 
is 8 000 kg.

Th e bus battery has a capacity of 90 kWh. Th e bus auxiliary 
consumption is 4,5 kW, the bus load in lights and equipment for 
passenger tickets is 3,5 kW, the consumption of air conditioning 
is 2 kW and the consumption of electric motors is 90 kW. Th e 
charging infrastructure off ers a power of 500 kW in 20 seconds. 
Fig. 3 shows the bus power consumption in the simulated route 
sections, evidencing that in the sixth stops the bus receives load 
and the fi ft h stop does not receive load, and Fig. 4 shows the 
number of charging stations and their distribution on the route 
according to the percentages of battery capacity for Scenario 1.
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Fig. 3. Power behavior [own study]

Fig. 4. Scenario 1 results [own study]

4.2 Scenario 2

In this scenario, a route with 22 stops and distance of 23 km 
is used (regional environment). Fig. 2 shows the distance by stops 
in meters. Th e bus average speed on the route is μas = 6,8 m/s and 
a standard deviation of σas = 0,05μas is assumed. Th e bus duration 
time at the stops is μst = 25 seconds and a standard deviation of σst
= 0,05μst is assumed. Th e passengers net weight is wp = 75 kg, the 
average number of passengers going up and down on the bus at 
each stop i is λup = 11 and λdown = 13 respectively. It is assumed as 

an initial condition that 5 passengers ride the bus at the fi rst stop. 
Th e empty bus weight is 8 000 kg.

Th e bus battery has a capacity of 90 kWh. Th e bus auxiliary 
consumption is 4,5 kW, the bus load in lights and equipment for 
passenger tickets 3,5 kW, the consumption of air conditioning 
is 2 kW and the consumption of electric motors is 90 kW. Th e 
charging infrastructure off ers a power of 500 kW in 20 seconds. 
Fig. 5 shows the number of charging stations and their distribution 
on the route for Scenario 2.

Fig. 5. Scenario 2 results [own study]

Th e probabilistic variables of the model introduce fl uctuations in 
the simulation results, but according to the theory of large numbers 
if we repeat the process k times the result tends to the simulation 
process average behavior. Th e simulation process stability is 
analyzed. To analyze the convergence, the simulation results of 100, 
500 and 1000 process samples and their corresponding errors are 
shown in the Table 2.

Table 2. Simulations results [own study]

Total samples Mean Standard deviation Error

100 6,13043 5,99488 0,117724

500 6,73504 5,98865 0,047461

1000 7,14058 6,13602 0,032714

Th e results show that the process is stabilized when the number 
of simulations is increased and the error (see Equation 17) allows 
to determine when the number of samples is enough, in this case 
when the error is lower than 0,05 is considered acceptable the 
number of samples. Th erefore, the number of charging stations 
is 7 stations.

4.3 Scenario 3

In this scenario, both routes shown in the Fig. 2 are analyzed. 
Table 3 shows the parameters of the routes analyzed. At stops where 
there is interaction between routes, 40 seconds are assumed for the 
passenger’s line load.

Th e Scenario 3 shows how the model results are modifi ed 
when there are interactions in the routes. Th e diff erent routes are 
independent, and the result depends on their characteristics, but 
in the stops where there are interactions it is appropriate to install 
a charging station that provides service to the two routes, reducing 
the investment costs. Th e proposed model is consistent with the 
previous statement. In Scenario 3 it is evident how the interaction 
modifi es the proposal of charging stations distribution (see Fig. 6). 
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Th e solution is achieved by superimposing the simulations at the 
stops where exist interaction.

Th e bus agglomeration at stops can be a problem for this 
system, because each bus needs a relatively short time to battery 
charging at the stop, and as we can see from the previous results, 
the interactions on the routes determine the moment at battery 
charging of the electrical buses. Based on the experience of 
previous papers [6] in the systems with interactions in the routes 
it is frequently to use the bus speed control based on the battery 
State of Charge. Th e model proposed in this paper considers 
the battery State of Charge of the buses and minimizes the bus 
charging points number on the route as evidenced in the previous 
results. Fig.s 7 and 8 show how when we control the speed of the 
buses the results are modifi ed for the same scenario.

Fig. 6. Scenario 3 results [own study]

Table 3. Routes parameters [own study]

Parameter Route 1 Route 2

Distance 23 km 11 km

Bus average speed (μas) 6,8 m/s 4,5 m/s

Standard deviation (σas) 0,05μas

Bus duration time at the stops (μst) 25 seconds 20 seconds

Standard deviation (σst) 0,05μst

Passengers net weight (wp) 75 kg

Passengers average number (up) 11 9

Passengers average number (down) 13 10

Empty bus weight 8 000 kg

Bus battery capacity 90 kWh 67,5 kWh

Bus auxiliary consumption 4,5 kW

Bus load in lights and equipment 3,5 kW

Consumption of air conditioning 2 kW

Consumption of electric motors 90 kW

Charging infrastructure 500 kW in 20 seconds

Fig. 7. Speed behavior of the electrical bus in the route [own study]

Fig. 8. Bus charging distribution [own study]

Fig. 8 shows how the bus battery charging moment change 
when speed control is performed, for example, the bus in urban 
environment needs 5 fast charges on the route. When the speed 
control is not carried out, the bus charging the battery at stops 
8, 19, 20, 21 and 22; when speed control is performed, the bus 
charging the battery at stops 18, 19, 20, 21 and 22.

5. Conclusion

Th e investigation results show the distribution of the charging 
stations necessary for the bus to reach the route destination. Th e 
proposed optimization model allows estimating the best charging 
infrastructure distribution of a bus in a route. Th e paper shows 
how the interaction between the routes defi nes the fi nal problem 
solution. Th e results of the investigation show that when we 
control the speed of the buses, the charging moments of the electric 
buses change, evidencing the applicability of the model and its 
compatibility with this the conceptual framework, therefore, with 
this model we can avoid the bus agglomeration at stops problem. 
Th e results support the decision-making process.
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