PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of negative effects of a coach running with the wheel-flat on a track by means of simulation computations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this paper is focused on the computer modelling and dynamic simulation of a coach with damaged wheel and the assessment of these negative effects on a track. The article is composed of two parts. Firstly, problems about the operation of rolling stocks with damaged wheels are described. There are also mentioned diagnostic systems installed on a track for detection and assessment their negative impacts on a track. The second part of the article is dedicated to computer modelling of a coach running on a railway track with the damaged wheel, in this case with the wheel-flat. For these purposes the virtual model of a coach were created. After simulations of its running there were performed analyses needed for the evaluation of its negative impacts on a railway track.
Czasopismo
Rocznik
Strony
31--37
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
autor
  • University of Žilina, Faculty of Mechanical Engineering Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • University of Žilina, Faculty of Mechanical Engineering Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  • Vilnius Gediminas Technical University, Faculty of Transport Engineering J. Basanavičiaus r. 28, LT-03224 Vilnius, Lithuania
Bibliografia
  • 1. Bian J, Yuantong G, Murray MHA. Dynamic WheelRail Impact Analysis of Railway Track under Wheel Flat by Finite Element Analysis. Vehicle System Dynamics, 2013; 51(6): 784-797.
  • 2. Bogdevičius M, Zygiene R, Bureika G, Dalydka S. An analytical mathematical method for calculation of the dynamic wheel-rail impact force caused by wheel flat. Vehicle system dynamics, 2016; 54(5): 689-705.
  • 3. Caban J, Droździel P, Barta D, Liščák Š. Vehicle tire pressure monitoring systems. Diagnostyka, 2014; 15(3):11-14.
  • 4. Dižo, J, Steišūnas S, Blatnický M. Simulation analysis of the effects of a rail vehicle running with wheel flat. Manufacturing Technology, 2016; 16(5): 889-896.
  • 5. Galliková J, Poprocký R. Use of EAM systems for effective vehicles maintenance. TSD: XIV international technical systems degradation conference: Liptovský Mikuláš, April 8-11, 2015. Warszawa: Polskie Naukowo-Techniczne Towarzystwo Exploatacyjne, 2015.
  • 6. Gerlici J, Gorgunov M, Kravchenko K, Kostzukevich A, Nozhenko O, Lack T. Experimental rigs for wheel/rail contact research. Manufacturing Technology, 2016; 16(5): 909-916.
  • 7. Gerlici J, Lack T. Contact geometry influence on the rail/wheel surface stress distribution. Procedia Engineering, 2010; 2(1): 2249-2257.
  • 8. Gerlici J, Lack T. Iterative method for railway wheel profile design. Komunikacie: scientific letters of the University of Žilina, 2009; 11(2): 49-56.
  • 9. Gerlici J, Lack T. Railway wheel and rail head profiles development based on the geometric characteristics shapes. Wear, 2011; 271(1-2): 246-258.
  • 10. Harušinec J, Maňurová M, Suchánek A. Optimalization of a brake unit in terms of control range. Manufacturing technology: journal for science, research and production. 2016; 16(5): 917-923.
  • 11. Hauser V, Nozhenko OS, Kravchenko KO, Loulová M, Gerlici J, Lack T. Proposal of a mechanism for setting bogie wheelsets to radial position while riding along a track curve. Manufacturing technology: journal for science, research and production. 2017; 17(2): 186-192.
  • 12. Kalker JJ. Wheel-rail rolling contact theory. Wear, 1991; 4(1-2): 243-261.
  • 13. Kudyurov LV, Garipov DC. A mathematical model of a planar defect in the wheel roll surface with elastic suspension the inclusion and vertical irregularities path. (In Russian) Journal. Tech. University Press. Avg. Fyz.-math. Science, 2010; 1(20): 178-187.
  • 14. Labuda R, Barta D, Kovalčík A. Effective use of the braking effect of vehicle drivetrain at deceleration. KOKA 2010 (electronic source): XVI. International scientific conference of Czech and Slovak university departments and institutions dealing with the research of combustion engines, Liberec, Technical University in Liberec, September 6-7, 2010: 206-211.
  • 15. Lack T, Gerlici J. A modified strip method to speed up the calculation of normal stress between wheel and rail. Applied mechanics and materials, 2014; 486: 359-370.
  • 16. Lack T, Gerlici J. A modified strip method to speed up the calculation of tangential stress between wheel and rail. Applied mechanics and materials. 2014; 486: 371-378.
  • 17. Lack T, Gerlici J. Contact area and normal stress determination on railway wheel/rail contact. Komunikacie: scientific letters of the University of Žilina, 2005; 7(2): 38-45.
  • 18. Loulová M, Suchánek A, Harušinec J. Evaluation of the parameters affecting passenger riding comfort of a rail vehicle. Manufacturing technology: journal for science, research and production. 2017; 17(2): 224-231.
  • 19. Lunys O, Dailydka S, Steišūnas S, Bureika G. Analysis of freight wagon wheel failure detection in Lithuanian Railways. TRANSBALTICA 2015: the 9th International Conference May 7–8, 2015, Vilnius, Lithuania: selected papers Vilnius: Technika, 2015.
  • 20. Maňurová M, Gerlici J, Lack T, Harušinec J. Integration of a handbrake activity indicator into the freight wagon bogie Y25 structure (In Slovak). Strojírenská technologie: journal for science, research and production. 2013; 18(2): 77-81.
  • 21. Melanin B. Strike wheels on the rail: load-deformation WORLD TRANSPORT 03, 2010: 20-25. (In Russian).
  • 22. Myamlin S, Lingaitis LP, Daylydka S, Vaičūnas G, Bogdevičius M, Bureika G. Determination of the dynamic characteristics of freight wagons with various bogie. Transport, 2015; 30(1): 88-92.
  • 23. Pieringer A, Kropp W, Nielsen JCO. The influence of contact modelling on simulated wheel/rail interaction due to wheel flats. Wear, Vol. 314. No. 1-2, June 15th 2014: 273-281.
  • 24. Popp K, Kruse H, Kaiser I. Vehicle-Track Dynamics in the Mid-Frequency Range. Vehicle System Dynamics, 1999; 31(5-6): 423-464.
  • 25. Sladkovski A, Pogorelov D. Yoo. Research study dynamic interactions in the wheel-rail contact in the presence of slides on the wheel pair. BICHIK, 2008; 5(123): 88-95. (In Russian).
  • 26. Simpack 2014. Simpack documentation 2014, user guide (part of the program package).
  • 27. Suchánek A, Harušinec J, Gerlici J, Lack T. Experimental and analytical detection of stress and temperatures in braked railway wheel during braking by the brake block Strojírenská technologie, 2013; 18(2): 111-116. (In Slovak).
  • 28. Šťastniak P, Harušinec J. Computer aided simulation analysis for computation of modal analysis of the freight wagon. Komunikacie: scientific letters of the University of Žilina. 2013; 15(4): 73-79.
  • 29. Šťastniak P, Harušinec J, Gerlici J, Lack T. Structural analysis of the construction freight bogie frame (In Slovak). Strojírenská technologie: journal for science, research and production, 2013; 18(2): 105-111.
  • 30. Šťastniak P, Smetanka L, Moravčík M. Development of modern railway bogie for broad track gauge - bogie frame assessment. Manufacturing technology: journal for science, research and production, 2017; 17(2): 250-256.
  • 31. Wallentin M, Bjarnehed HL, Lunden R. Cracks around railway wheel flats exposed to rolling contact loads and residual stresses. Wear, 2005; 258(7-8): 1319-1329.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-210090b8-6a3a-44c1-85e6-7b9c56a8d90c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.