PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal defect characterization and heat conduction modeling during fiber laser cutting carbon fiber reinforced polymer laminates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High-power fiber laser has been proven to be feasible for cutting carbon fiber reinforced polymers with several advantages including noncontact force, high efficiency and flexibility, while the characteristics of thermal damage and heat conduction in materials are not yet fully understood. Continuous-wave fiber laser was applied in this work to cut 2.0-mm-thick carbon fiber reinforced polymer laminates with different layup configurations. The influence of processing parameters including laser power and cutting speed on thermal damage was investigated. The characteristics of various thermal defects on different positions of machined surface were analyzed using high-resolution SEM and mathematical models. Interestingly, swollen fibers were observed and they connected together to form irregular swollen masses. According to further analysis on the initial heat distribution, it showed that cutting speed was the main factor affecting heat accumulation. In addition, modified heat conduction model was developed to analyze heat transfer within unidirectional carbon fiber reinforced polymer laminates in comparison with experimental results, which can be applied to predict heat affect zone during high-power fiber laser cutting composite materials.
Rocznik
Strony
453--466
Opis fizyczny
Bibliogr. 29 poz., fot., rys., wykr.
Twórcy
autor
  • State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, Hunan, China
autor
  • State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, Hunan, China
autor
  • State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, Hunan, China
autor
  • State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, Hunan, China
  • Hunan Provincial Key Laboratory of Intelligent Laser Manufacturing, Hunan University, Changsha 410082, Hunan, China
Bibliografia
  • [1] Alam P, Mamalis D, Robert C, Floreani C, Brádaigh CMÓ. The fatigue of carbon fibre reinforced plastics-a review. Campos Part B Eng. 2019;166:555–79. https ://doi.org/10.1016/j.composites b.2019.02.016.
  • [2] Firmo JP, Roquette MG, Correia JR, Azevedo AS. Influence of elevated temperature on epoxy adhesive used in CFRP strengthening systems for civil engineering applications. Int J Adhes Adhes. 2019;93:102333. https ://doi.org/10.1016/j.ijadh adh.2019.01.027.
  • [3] Pan CT, Hocheng H. Evaluation of anisotropic thermal conductivity for unidirectional FRP in laser machining. Compos Part A Appl Sci Manuf. 2001;32:1657–67. https ://doi.org/10.1016/S1359-835X(00)00093 -2.
  • [4] Li M, Huang M, Jiang X, Kuo CL, Yang X. Study on burr occurrence and surface integrity during slot milling of multidirectional and plain woven CFRPs. Int J Adv Manuf Technol. 2018;97:163–73. https ://doi.org/10.1007/s0017 0-018-1937-6.
  • [5] El-Hofy MH, El-Hofy H. Laser beam machining of carbon fiber reinforced composites: a review. Int J Adv Manuf Technol. 2019;101:2965–75. https ://doi.org/10.1007/s0017 0-018-2978-6.
  • [6] Shanmugam DK, Nguyen T, Wang J. A study of delamination on graphite/epoxy composites in abrasive waterjet machining. Compos Part A Appl Sci Manuf. 2008;39:923–9. https ://doi.org/10.1016/j.compo sites a.2008.04.001.
  • [7] Habib S, Okada A. Influence of electrical discharge machining parameters on cutting parameters of carbon fiber-reinforced plastic. Mach Sci Technol. 2016;20:99–114. https ://doi.org/10.1080/10910 344.2015.11339 14.
  • [8] Li M, Li S, Yang X. The influence of machining processes on strain distribution and progressive failure characteristics when producing holes in CFRP. Compos Struct. 2020;238:111994. https ://doi.org/10.1016/j.comps truct .2020.11199 4.
  • [9] Uhlmann E, Spur G, Hocheng H, Liebelt S, Pan CT. The extent of laser-induced thermal damage of UD and crossply composite laminates. Int J Mach Tools Manuf. 1999;39:639–50. https ://doi.org/10.1016/S0890 -6955(98)00045 -5.
  • [10] Weber R, Hafner M, Michalowski A, Graf T. Minimum damage in CFRP laser processing. Phys Procedia. 2011;12:302–7. https ://doi.org/10.1016/j.phpro .2011.03.137.
  • [11] Oliveira V, Sharma SP, de Moura MFSF, Moreira RDF, Vilar R. Surface treatment of CFRP composites using femtosecond laser radiation. Opt Laser Eng. 2017;94:37–43. https ://doi.org/10.1016/j.optla seng.2017.02.011.
  • [12] Leone C, Genna S. Effects of surface laser treatment on direct co-bonding strength of CFRP laminates. Compos Struct. 2018;194:240–51. https ://doi.org/10.1016/j.comps truct .2018.03.096.
  • [13] Brodhun J, Blass D, Dilger K. Laser transmission joining of thermoplastic fasteners: application for thermoset CFRP. Proc Inst Mech Eng L J Mater. 2018;233:475–84. https ://doi.org/10.1177/14644 20718 80457 1.
  • [14] Xie Y, Yang B, Lu L, Wan Z, Liu X. Shear strength of bonded joints of carbon fiber reinforced plastic (CFRP) laminates enhanced by a two-step laser surface treatment. Campos Struct. 2020;232:111559. https ://doi.org/10.1016/j.comps truct .2019.11155 9.
  • [15] Fujita M, Ohkawa H, Somekawa T, Otsuka M, Maeda Y, Matsutani T, Miyanaga N. Wavelength and pulsewidth dependences of laser processing of CFRP. Phys Procedia. 2016;83:1031–6. https ://doi.org/10.1016/j.phpro .2016.08.108.
  • [16] Li ZL, Zheng HY, Lim GC, Chu PL, Li L. Study on UV laser machining quality of carbon fibre reinforced composites. Campos Part A Appl Sci Manuf. 2010;41:1403–8. https ://doi.org/10.1016/j.compo sites a.2010.05.017.
  • [17] Li M, Gan G, Zhang Y, Yang X. Thermal damage of CFRP laminate in fiber laser cutting process and its impact on the mechanical behavior and strain distribution. Arch Civ Mech Eng. 2019;19:1511–22. https ://doi.org/10.1016/j.acme.2019.08.005.
  • [18] Wu CW, Wu XQ, Huang CG. Ablation behaviors of carbon reinforced polymer composites by laser of different operation modes. Opt Laser Technol. 2015;73:23–8. https: //doi.org/10.1016/j.optlastec.2015.04.008.
  • [19] Ohkubo T, Sato Y, Matsunaga EI, Tsukamoto M. Three-dimensional numerical simulation during laser processing of CFRP. Appl Surf Sci. 2017;417:104–7. https ://doi.org/10.1016/j.apsusc.2017.02.249.
  • [20] Xu H, Hu J. Modeling of the material removal and heat affected zone formation in CFRP short pulsed laser processing. Apel Math Model. 2017;46:354–64. https ://doi.org/10.1016/j.apm.2017.01.072.
  • [21] Wahab MS, Rahman NA, Mohamed MAS, Rahim EA. Optimization of laser cutting parameters on the laminated carbon fibre reinforced plastics (CFRP) composites using DOE technique. Appl Mech Mater. 2014;660:60–4. https ://doi.org/10.4028/www.scientific .net/AMM.660.60.
  • [22] Pagano N, Ascari A, Liverani E, Donati L, Campana G, Fortunato A. Laser interaction with carbon fibre reinforced polymers. Procedia CIRP. 2015;33:423–7. https ://doi.org/10.1016/j.procir.2015.06.097.
  • [23] Takahashi K, Tsukamoto M, Masuno S, Sato Y. Heat conduction analysis of laser CFRP processing with IR and UV laser light. Compos Part A Appl Sci Manuf. 2016;84:114–22. https ://doi.org/10.1016/j.compo sites a.2015.12.009.
  • [24] Herzog D, Schmidt-Lehr M, Oberlander M, Canisius M, Radek M, Emmelmann C. Laser cutting of carbon fibre reinforced plastics of high thickness. Mater Des. 2016;92:742–9. https ://doi.org/10.1016/j.matde s.2015.12.056.
  • [25] Herzog D, Schmidt-Lehr M, Canisius M, Oberlander M, Tasche JP, Emmelmann C. Laser cutting of carbon fiber reinforced plastic using a 30 kW fiber laser. J Laser Appl. 2015;27:S28001. https ://doi.org/10.2351/1.49063 04.
  • [26] Voisey KT, Fouquet S, Roy D, Clyne TW. Fibre swelling during laser drilling of carbon fibre composites. Opt Laser Eng. 2006;44:1185–97. https ://doi.org/10.1016/j.optlaseng.2005.10.008.
  • [27] Oh S, Lee I, Park YB, Ki H. Investigation of cut quality in fiber laser cutting of CFRP. Opt Laser Technol. 2019;113:129–40. https ://doi.org/10.1016/j.optla stec.2018.12.018.
  • [28] Springer GS, Tsai SW. Thermal conductivities of unidirectional materials. J Compos Mater. 1967;1:166–73. https ://doi.org/10.1177/00219 98367 00100 206.
  • [29] Necati Özısık M, Orlande HRB. Inverse heat transfer: fundamentals and applications. New York: Taylor & Francis; 2000.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20f9212f-ee17-4213-aa2b-74ed37b24b16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.