PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Positive Effect of Biochar Derived from Argan Waste on Soil Nutrients and Growth of Three Plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The lack of organic matter content in deteriorated soils in drought stricken areas is a serious problem for vegetation cover. The use of organic amendments like biochar and compost to agricultural soils could be a good remedy for poor soil, water deficiency and plants growth. The comparative analysis of the effects of biochar produced from argan shells, compost and their mixture on the growth of quinoa (Chenopodium quinoa), sugar beet (Beta vulgaris) and alfalfa (Medicago sativa) was the main objective of this research. It was assumed that the addition of biochar mixed with compost could enhance soil fertility and then improve crop productivity of plants. For this purpose, three treatments (2%, 4% and 6%) of biochar (B), compost (C) and biochar–compost (B–C) mixture were applied to soil. The samples for different treatments were collected, incubated and then analyzed. In order to evaluate the plant growth, the greenhouse experiments were conducted for three months in the pots filled with untreated and treated soils. The results showed that the addition of biochar and compost to soil increased pH, electrical conductivity, exchangeable cations, total nitrogen, phosphorus, total organic matter and cation exchange capacity. A significant improvement of the biomass of plants has been observed when applying a mixture of biochar and compost at 6% for quinoa and sugar beet and at 4% for alfalfa. According to the obtained results, mixing argan biochar with compost has a positive impact on soil nutrients and growth of plants.
Rocznik
Strony
28--34
Opis fizyczny
Bibliogr. 32 poz., tab.
Twórcy
  • Faculty of applied sciences, Ibn Zohr University, Agadir, Morocco
autor
  • Faculty of sciences, Ibn Zohr University, Agadir, Morocco
  • Hassan II Agronomic and Veterinary Institute, Agadir, Morocco
Bibliografia
  • 1. Agegnehu G., Nelson P.N., Bird M.I. 2016. The effects of biochar, compost and their mixture and nitrogen fertilizer on yield and nitrogen use efficiency of barley grown on a Nitisol in the highlands of Ethiopia. Sci. Total Environ., 569–570, 869–879.
  • 2. Amini S., Ghadiri H., Chen C., Marschner P. 2016. Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. J. Soil Sediment., 16, 939–953.
  • 3. Badraoui M., Agbani M., Soudi B. 2000. Évolution de la qualité des sols sous mise en valeur intensive au Maroc. Conférence ‘Intensification agricole et qualité des sols et des eaux’, Rabat, Maroc, 2–3 Novembre (In french).
  • 4. Blakemore L.C., Searle P.L., Daly B.K. 1987. Methods for Chemical Analysis of Soils. New Zealand Soil Bureau Scientific Report, 80, 103 p.
  • 5. Bouqbis L., Daoud S., Kory H.W., Kammann C.I., Ainlhout L.F.Z., Harrouni M.C. 2016. Biochar from argan shells: production and characterization. Int. J. Recycl. Org. Waste Agric., 5, 361–365.
  • 6. Butnan S., Deenik J.L., Toomsan B., Antal M.J., Vityakon P. 2015. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma, 237, 105–116.
  • 7. Christensen B.T. 2004. Tightening the nitrogen cycle. In: Schjonning, P., Elmholt, S., Christensen, B.T. (Eds.), Managing Soil Quality, Challenges in Modern Agriculture. CABI Publishing. London, UK, pp. 44–66.
  • 8. Haider G., Steffens D., Moser G., Müller C., Kammann C.I. 2017. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agriculture Ecosystems and Environment, 237, 80–94.
  • 9. Hammer E.C., Forstreuter M., Rillig M.C., Kohler J. 2015. Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Appl. Soil Ecol., 96, 114–121.
  • 10. Hazelton P., Murphy B. 2007. Interpreting Soils Test Resulting. What do All the Numbers Mean? CSIRO Publishing, Australia.
  • 11. Jones D.L., Rousk J., Edwards-Jones G., DeLuca T.H., Murphy D.V. 2012. Biocharmediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem., 45, 113–124.
  • 12. Jones S., Bardos R.P., Kidd P.S., Mench M., de Leij F., Hutchings T., Cundy A., Joyce C., Soja G., Friesl-Hanl W., Herzig R. 2016. Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils. J. Environ. Manage., 171, 101–112.
  • 13. Karer J., Wawra A., Zehetner F., Dunst G., Wagner M., Pavel P.B., Puschenreiter M., Friesl-Hanl W., Soja G. 2015. Effects of biochars and compost mixtures and inorganic additives on immobilisation of heavy metals in contaminated soils. Water Air Soil Pollut., 226, 342–354.
  • 14. Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D. 2011. Biochar effects on soil biota: a review. Soil Biol. Biochem., 43, 1812–1836.
  • 15. Li Y., Hu S., Chen J., Müller K., Li Y., Fu W., Lin Z., Wang H. 2018. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. Journal of Soils and Sediments, 18, 546–563.
  • 16. Lindsay W.L., Norvell W.A., 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–428.
  • 17. Lorenz K., Lal R. 2014. Biochar application to soil for climate change mitigation bysoil organic carbon sequestration. J. Plant. Nutr. Soil. Sci., 177, 651–670.
  • 18. Metson A.J. 1956. Methods of chemical analysis for soil survey samples. N Z Soil Bur Bull n° 12.
  • 19. Mills R.T., Gavazov K.S., Spiegelberger T., Johnson D., Buttler A. 2014. Diminished soil functions occur under simulated climate change in a sup-alpine pasture, but heterotrophic temperature sensitivity indicates microbial resilience. Sci. Total Environ., 473, 465–472.
  • 20. Ohsowski B.M., Klironomos J.N., Dunfield K.E., Hart M.M. 2012. Potential of soil amendments for restoring severely disturbed grasslands. Appl. Soil Ecol., 60, 77–83.
  • 21. Paradelo R., Vázquez-Nion D., Silva B., González Á., Barral M.T. 2016. Acidification of
  • 22. mixtures of granite powder and compost for reuse in plant production. Comp. Sci. Uti., 24, 1–10.
  • 23. Perez-Esteban J., Escolastico C., Masaguer A., Moliner A. 2012. Effects of sheep and horse manure and pine bark amendments on metal distribution and chemical properties of contaminated mine soils. Eur. J. Soil Sci., 63, 733–742.
  • 24. Rajkovich S., Enders A., Hanley K., Hyland C., Zimmerman A.R., Lehmann J. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils, 48 (3), 271–284.
  • 25. Ramzani P.M.A., Iqbal M., Kausar S., Ali S., Rizwan M., Virk Z.A. 2016. Effect of different amendments on rice (Oryza sativa L.) growth, yield, nutrient uptake and grain quality in Ni-contaminated soil. Environ. Sci. Pollut. Res., 23, 18585–18595.
  • 26. Schlesinger W.H., Dietze M.C., Jackson R.B., Phillips R.P., Rhoades C.C., Rustad L.E., Vose J.M. 2015. Forest biogeochemistry in response to drought. Glob. Change Biol., 22, 2318–2328.
  • 27. Schmidt H.P., Kammann C., Niggli C., Evangelou M.W.H., Mackie K.A., Abiven S. 2014. Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grapequality. Agriculture, Ecosystems and Environment, 191, 117–123.
  • 28. Smith P. 2016. Soil carbon sequestration and biochar as negative emission tech-nologies. J. Glob. Change Biol., 22, 1315–1324.
  • 29. Solaiman Z.M., Anawar H.M. 2015. Application of biochars for soil constraints: challenges and solutions. Pedosphere, 25, 631–638.
  • 30. Sorrenti G., Toselli M. 2016. Soil leaching as affected by the amendment with biochar and compost. Agriculture, Ecosystems and Environment, 226, 56–64.
  • 31. Zainul A., Kory H.W., Huchzermeyer B., Gul B., Khan M.A. 2017. Impact of a Biochar or a CompostBiochar Mixture on Water relation, Nutrient uptake and Photosynthesis of Phragmites karka. Pedosphere. https://doi.org/10.1016/S1002–0160(17)60362-X.
  • 32. Sorrenti G., Toselli M. 2016. Soil leaching as affected by the amendment with biochar and compost. Agriculture, Ecosystems and Environment, 226, 56–64.
  • 33. Van Ranst E., Verloo M., Demeyer A., Pauwels M.J. 1999. Manual for the Soil Chemistry and Fertility Laboratory-Analytical Methods for Soils and Plants, Equipment, and Management of Consumables. NUGI 835, Ghent, Belgium, 243 p.
Uwagi
Błędna numeracja w bibliografii (poz. 21-22).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20f0aafd-20c2-4592-a6c6-85a1ad2f7a8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.