Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Dwuetapowe spiekanie mikrosferycznych nanocząstek proszku 316L
Języki publikacji
Abstrakty
316L stainless steel is a well-established engineering material and lots of components are fabricated by either ingot metallurgy or powder metallurgy. From the viewpoints of material properties and process versatility, powder metallurgy has been widely applied in industries. Generally, stainless steel powders are prepared by atomization processes and powder characteristics, compaction ability, and sinterability are quite different according to the powder preparation process. In the present study, a nanoparticle dispersed micro-sphere powder is synthesized by pulse wire explosion of 316L stainless steel wire in order to facilitate compaction ability and sintering ability. Nanoparticles which are deposited on the surface of micro-powder are advantageous for a rigid die compaction while spherical micro-powder is not to be compacted. Additionally, double step sintering behavior is observed for the powder in the dilatometry of cylindrical compact body. Earlier shrinkage peak comes from the sintering of nanoparticle and later one results from the micro-powder sintering. Microstructure as well as phase composition of the sintered body is investigated.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1155--1158
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Incheon Regional Division, Korea Institute of Industrial Technology, Incheon 406-840, South Korea
autor
- Incheon Regional Division, Korea Institute of Industrial Technology, Incheon 406-840, South Korea
autor
- Incheon Regional Division, Korea Institute of Industrial Technology, Incheon 406-840, South Korea
autor
- Incheon Regional Division, Korea Institute of Industrial Technology, Incheon 406-840, South Korea
autor
- Hanyang University, Seoul 133-791, South Korea
autor
- Incheon Regional Division, Korea Institute of Industrial Technology, Incheon 406-840, South Korea
Bibliografia
- [1] R. E. D. Mann, R. L. Hexemer Jr, I. W. Donaldson, D. P. Bishop, Mater. Sci. Eng. 525, 5776 (2011).
- [2] R. Baccino, F. Moret, F. Pellerin, D. Guichard, G. Raisson, Mater. Des. 21, 345 (2000).
- [3] Yoshinobu, Takeda, J. Kor. Powd. Met. Inst. 5, 340 (1998).
- [4] B. Kieback, G. Stephani, T. Weibgarber, T. Schuberrt, U. Waag, A. Bohm, O. Andersen, H. Gohler, M. Reinfried, J. Kor. Powd. Met. Inst. 10, 383 (2003).
- [5] B. P Saha, V. Kumar, S. V. Joshi, A. Balakrishnan, C.L. Martin, Powder Technol. 224, 90 (2012).
- [6] J. M. Ting, R. Y. Lin, J. Mater. Sci. 30, 2382 (1995).
- [7] H. S. Kim, Y. Y. Kim, D. K. Park, I. S. Ahn, J. Kor. Powd. Met. Inst. 20, 203 (2013).
- [8] L. E. Euliss, J. A. DuPont, S. Gratton, J. DeSimone, Chem. Soc. Rev. 35, 1095 (2006).
- [9] S. Patel, A.M. Kaushal, A.K. Bansal, Pharm. Res. 24, 111 (2006).
- [10] K. Komeya, H. Inoue, J. Mater. Sci. 4, 1045 (1969).
- [11] M. J. Kirchhof, H. Forster, H.J. Schmid, W. Peukert, J. Aerosol Sci. 45, 26 (2012).
- [12] L. Jiang, Y. Liao, Q. Wan, W. Li, J. Mater. Sci. – Mater. Med. 22, 2429 (2011).
- [13] H. S. Joo, C. W. Han, B. M. Kim, D. H. Kim, H. S. Choi, Rev.Adv. Mater. Sci. 28, 200 (2011).
- [14] R. Sarathia, T. K. Sindhu, S. R. Chakravarthy, Archana Sharmac, K.V. Nageshc, J. Alloys Compd. 475, 658 (2009).
- [15] J. K. Antony, N. J. Vasa, S. R. Chakravarthy, R. Sarathi, J. Quant, Spectrosc. Radiat. Transfer 111, 2509 (2010).
- [16] S. Krishnan, A.S.M.A. Haseeb, M.R. Johan, J. Nanopart. Res. 15, 1 (2013).
- [17] A. S. Nykiel, M. Nykiel, Arch. Foundry Eng. Special Issue 3, 235 (2010).
- [18] W. Zhang, I. Gladwell, Int. J. Comput. Mater. Sci. Surf. Eng. 12, 84 (1998).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-20eeedd5-56f0-4ad0-89b8-dcc15c98d641